• Title/Summary/Keyword: plasma electrolyte oxidation(PEO)

Search Result 49, Processing Time 0.023 seconds

Effect of Electrolyte Composition on The Formation Behavior of Plasma Electrolytic Oxidation Films on Al1050 Alloy (Al1050 합금의 플라즈마 전해산화 피막 형성 거동에 미치는 전해질 조성의 영향)

  • Kim, Ju-Seok;Mun, Seong-Mo;O, Myeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.98.1-98.1
    • /
    • 2017
  • 본 연구에서는 정전류 조건에서 알루미늄 합금의 PEO(Plasma Electrolytic Oxidation) 피막 형성 거동에 대한 전해질 조성의 영향을 아크 발생 양상, 전압-시간 곡선 및 형성된 표면피막의 구조를 관찰하여 연구하였다. 실험에 사용된 전해질은 NaOH 수용액에 $Na_2SiO_3$을 혼합하여 구성되었으며, NaOH와 $Na_2SiO_3$의 농도는 각각 0.01 ~ 1.0 M 와 0 ~ 2.0 M 사이로 조절되었다. 0.01 M NaOH 이하의 용액에서는 양극전압이 500 V 이상으로 상승되고 미세한 아크가 시편 표면 전체에 발생했으나, 0.02 M NaOH 이상의 농도에서는 양극전압이 300 V 이하로 감소되었고 아크발생이 관찰되지 않았다. 아크발생이 일어나지 않는 고농도의 0.5 M NaOH 용액의 경우 0.1 M 이상의 $Na_2SiO_3$를 첨가하였을 때 작은 아크의 무리가 발생되었다. 0.5 M NaOH 수용액에 0.1 M ~ 0.2 M $Na_2SiO_3$가 첨가되었을 땐 아크 무리가 발생하나 이내 일부 영역에서만 반복적으로 아크가 발생하는 로컬 버닝 현상이 일어났다. 한편 0.5 M NaOH 수용액에 0.5 M 이상의 $Na_2SiO_3$가 첨가되었을 때는 로컬 버닝이 일어나지 않고 전 표면에 걸쳐서 아크 무리가 이동하며 PEO 피막이 형성되었다. 0.01 M NaOH 수용액에서 형성된 PEO 피막의 두께는 처리 시간에 따라 증가하지 않고 $10{\mu}m$ 이하의 낮은 값을 보였다. 반면에 NaOH와 $Na_2SiO_3$ 혼합수용액에서 형성된 피막의 두께는 약 $30{\mu}m$ 이상의 높은 값을 보였다.

  • PDF

Influence of Electrolytic KF on the Uniform Thickness of Oxide Layers Formed on AZ91 Mg Alloy by Plasma Electrolytic Oxidation

  • Song, Duck-Hyun;Lim, Dae-Young;Fedorov, Vladimir;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.27 no.9
    • /
    • pp.495-500
    • /
    • 2017
  • Oxide layers were formed by an environmentally friendly plasma electrolytic oxidation (PEO) process on AZ91 Mg alloy. PEO treatment also resulted in strong adhesion between the oxide layer and the substrate. The influence of the KF electrolytic solution and the structure, composition, microstructure, and micro-hardness properties of the oxide layer were investigated. It was found that the addition of KF instead of KOH to the $Na_2SiO_3$ electrolytic solution increased the electrical conductivity. The oxide layers were mainly composed of MgO and $Mg_2SiO_4$ phases. The oxide layers exhibited solidification particles and pancake-shaped oxide melting. The pore size and surface roughness of the oxide layer decreased considerably with an increase in the concentration of KF, while densification of the oxide layers increased. It is shown that the addition of KF to the basis electrolyte resulted in fabricating of an oxide layer with higher surface hardness and smoother surface roughness on Mg alloys by the PEO process. The uniform thickness of the oxide layer formed on the Mg alloy substrates was largely determined by the electrolytic solution with KF, which suggests that the composition of the electrolytic solution is one of the key factors controlling the uniform thickness of the oxide layer.

Changing PEO coating formation on Mg alloys by particle additions to the treatment electrolyte

  • Blawert, Carsten;Srinivasan, Bala;Liang, Jun;Huang, Yuanding;Hoche, Daniel;Scharnagl, Nico;Heitmann, Volker;Burmester, Ulrich
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.7-11
    • /
    • 2012
  • Plasma electrolytic oxidation of magnesium alloys is a well known technique to produce corrosion and wear resistant coatings. The addition of particles to the electrolyte provides a possibility to produce coatings with an increasing range of composition by in-situ incorporation of those particles into the coating. An extensive literature review has revealed that the mode of incorporation depends mainly on the melting point of the used particles and the energy provided by the discharges of the PEO process. The spectrum ranges from inert to partly reactive incorporation, but a complete reactive incorporation and a formation of a new single phase coating was not observed so far. Thus a new approach in PEO processing is introduced using specific particles as a kind of sintering additive, changing not only the composition but lowering the melting temperature and increase the liquid phase fraction during the discharges, resulting in a new amorphous coating.

  • PDF

Si and Mg Coatings on the Hydroxyapatite Film Formed Ti-29Nb-xHf Alloys by Plasma Electrolyte Oxidation

  • Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.152-152
    • /
    • 2017
  • Titanium and its alloys have been widely used for biomedical applications. However, the use of the Ti-6Al-4V alloy in biomaterial is then a subject of controversy because aluminum ions and vanadium oxide have potential detrimental influence on the human body due to vanadium and aluminum. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element,such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}$-stabilizer and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Silicon (Si) and magnesium (Mg) has a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. In vitro studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. Therefore, in this study, Si and Mg coatings on the hydroxyapatite film formed Ti-29Nb-xHf alloys by plasma electrolyte oxidation has been investigated using several experimental techniques. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. The electrolyte was Si and Mg ions containing calcium acetate monohydrate + calcium glycerophosphate at room temperature. The microstructure, phase and composition of Si and Mg coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

Influence of ZrO2 Particulates on Corrosion Resistance of Magnesium Alloy Coated by Plasma Electrolytic Oxidation (플라즈마 전해산화 처리된 마그네슘 합금의 내부식성에 미치는 코팅층 내 지르코니아 입자 영향)

  • Namgung, Seung;Ko, Young Gun;Shin, Ki Ryong;Shin, Dong Hyuk
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.813-818
    • /
    • 2010
  • In current automobile and electronic industries, the use of magnesium alloys where both energy and weight saving are attainable is increasing. Despite their light weight, there has been an inherent drawback arising from the surface vulnerable to be oxidized with ease, specifically under corrosive environments. To protect magnesium alloy from corrosion, the present work deals with the electrochemical response of the oxide layer on magnesium alloy specimen prepared by plasma electrolytic oxidation (PEO) method in an electrolyte with zirconia powder. Surface observation using scanning electron microscopy evidences that a number of zirconia particles are effectively incorporated into oxide layer. From the results of potentio-dynamic tests in 3.5 wt% NaCl solution, the PEO-treated sample containing zirconia particles shows better corrosion properties than that without zirconia, which is the result of zirconia incorporation into the coating layer. Corrosion resistance is also measured by utilizing salt spray tests for 120 hrs.

Electrochemical characteristics of Ca, P, Sr, and Si Ions from PEO-treated Ti-6Al-4V Alloy Surface

  • Yu, Ji-Min;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.154-154
    • /
    • 2017
  • Ti-6Al-4V alloys are widely used as metal-lic biomaterials in dentistry and orthopedics due to its excellent biocompatibility and me-chanical properties. However, because of low biological activity, it is difficult to form bone growth directly on the surface of titanium implants. For this reason, surface treatment of plasma electrolytic oxidation(PEO) was used for dental implants. To enhance bioac-tivity on the surface, strontium(Sr) and sili-con(Si) ions can be added to PEO treated sur-face in the electrolyte containing these ions. The presence of Sr in the coating enhances osteoblast activity and differentiation, where-as it inhibits osteoclast production and prolif-eration. And Si has been found to be essen-tial for normal bone, cartilage growth, and development. In this study, electrochemical characteristics of Ca, P, Sr, and Si ions from PEO-treated Ti-6Al-4V alloy surface was re-searched using various experimental instruments. DC power is used and Ti-6Al-4V al-loy was subjected to a voltage of 280 V for 3 minutes in the electrolyte containing 5, 10, 20M% Sr ion and 5M% Si ion. The morphol-ogies of PEO-treated Ti-6Al-4V alloy by electrochemical anodization were examined by field-emission scanning electron micro-scopes (FE-SEM), energy dispersive x-ray spectroscopy (EDS), x-ray diffraction (XRD) and corrosion analysis using AC impedance and potentiodynamic polarization test in 0.9% NaCl solution at similar body tempera-ture using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV.

  • PDF

Bone-like Apatite Morphology on Si-Zn-Mn-hydroxyapatite Coating on Ti-6Al-4V Alloy by Plasma Electrolytic Oxidation

  • Park, Min-Gyu;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.158-158
    • /
    • 2017
  • Titanium and its alloys have been used in the field dental and orthopedic implants because of their excellent mechanical properties and biocompatibility. Despite these attractive properties, their passive films were somewhat bioinert in nature so that sufficient adhesion of bone cells to implant surface was delayed after surgical treatment. Recently, plasma electrolyte oxidation (PEO) of titanium metal has attracted a great deal of attention is a comparatively convenient and effective technique and good adhesion to substrates and it enhances wear and corrosion resistances and produces thick, hard, and strong oxide coatings. Silicon(Si), Zinc(Zn), and Manganese(Mn) have a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. And, Zn has been shown to be responsible for variations in body weight, bone length and bone biomechanical properties. Also, Mn influences regulation of bone remodeling because its low content in body is connected with the rise of the concentration of calcium, phosphates and phosphatase out of cells. The objective of this work was research on bone-like apatite morphology on Si-Zn-Mn-hydroxyapatite coating on Ti-6Al-4V alloy by plasma electrolytic oxidation. Anodized alloys were prepared at 280V voltage in the solution containing Si, Zn, and Mn ions. The surface characteristics of PEO treated Ti-6Al-4V alloy were investigated using XRD, FE-SEM, and EDS.

  • PDF

Corrosion Behavior of Ti-6Al-4V Alloy after Plasma Electrolytic Oxidation in Solutions Containing Ca, P and Zn

  • Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.120-120
    • /
    • 2016
  • Ti-6Al-4V alloy have been used for dental implant because of its excellent biocompatibility, corrosion resistance, and mechanical properties. However, the integration of such implant in bone was not in good condition to achieve improved osseointergraiton. For solving this problem, calcium phosphate (CaP) has been applied as coating materials on Ti alloy implants for hard tissue applications because its chemical similarity to the inorganic component of human bone, capability of conducting bone formation and strong affinity to the surrounding bone tissue. Various metallic elements, such as strontium (Sr), magnesium (Mg), zinc (Zn), sodium (Na), silicon (Si), silver (Ag), and yttrium (Y) are known to play an important role in the bone formation and also affect bone mineral characteristics, such as crystallinity, degradation behavior, and mechanical properties. Especially, Zn is essential for the growth of the human and Zn coating has a major impact on the improvement of corrosion resistance. Plasma electrolytic oxidation (PEO) is a promising technology to produce porous and firmly adherent inorganic Zn containing $TiO_2(Zn-TiO_2)$coatings on Ti surface, and the a mount of Zn introduced in to the coatings can be optimized by altering the electrolyte composition. In this study, corrosion behavior of Ti-6Al-4V alloy after plasma electrolytic oxidation in solutions containing Ca, P and Zn were studied by scanning electron microscopy (SEM), AC impedance, and potentiodynamic polarization test. A series of $Zn-TiO_2$ coatings are produced on Ti dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to +2000mV. Also, AC impedance was performed at frequencies ranging from 10MHz to 100kHz for corrosion resistance.

  • PDF

Plasma Electrolytic Oxidation of Ti-25Ta-xHf for Dental Implants (치과임플란트용 Ti-25Ta-xHf 합금의 플라즈마 전해 산화)

  • Kim, Jeong-Jae;Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.344-353
    • /
    • 2018
  • Plasma electrolytic oxidation of Ti-25Ta-xHf alloy in electrolyte containing Ca and P for dental implants was investigated using various experimental techniques. Ti-25Ta-xHf (x=0 and 15 wt.%) alloys were manufactured in an arc-melting vacuum furnace. Micropores were formed in PEO films on Ti-25Ta-xHf alloys in 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at 240 V, 270 V and 300 V for 3 min, respectively. The microstructure of Ti-25Ta-xHf alloys changed from (${\alpha}^{\prime}+{\alpha}^{{\prime}{\prime}}$) phase to (${\alpha}^{{\prime}{\prime}}+{\beta}$) phase by addition of Hf. As the applied potential increased, the number of pore and the area ratio of occupied by micro-pore decreased, whereas the pore size increased. The anatase phase increase as the applied potential increased. Also, the crystallite size of anatase-$TiO_2$ can be controlled by applied voltage.

Surface Observation of Mg-HA Coated Ti-6Al-4V Alloy by Plasma Electrolytic Oxidation

  • Yu, Ji-Min;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.198-198
    • /
    • 2016
  • An ideal orthopedic implant should provide an excellent bone-implant connection, less implant loosening and minimum adverse reactions. Commercial pure titanium (CP-Ti) and Ti alloys have been widely utilized for biomedical applications such as orthopedic and dental implants. However, being bioinert, the integration of such implant in bone was not in good condition to achieve improved osseointegraiton, there have been many efforts to modify the composition and topography of implant surface. These processes are generally classified as physical, chemical, and electrochemical methods. Plasma electrolytic oxidation (PEO) as an electrochemical route has been recently utilized to produce this kind of composite coatings. Mg ion plays a key role in bone metabolism, since it influences osteoblast and osteoclast activity. From previous studies, it has been found that Mg ions improve the bone formation on Ti alloys. PEO is a promising technology to produce porous and firmly adherent inorganic Mg containing $TiO_2$($Mg-TiO_2$ ) coatings on Ti surface, and the amount of Mg introduced into the coatings can be optimized by altering the electrolyte composition. In this study, a series of $Mg-TiO_2$ coatings are produced on Ti-6Al-4V ELI dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. Based on the preliminary analysis of the coating structure, composition and morphology, a bone like apatite formation model is used to evaluate the in vitro biological responses at the bone-implant interface. The enhancement of the bone like apatite forming ability arises from $Mg-TiO_2$ surface, which has formed the reduction of the Mg ions. The promising results successfully demonstrate the immense potential of $Mg-TiO_2$ coatings in dental and biomaterials applications.

  • PDF