• 제목/요약/키워드: plasma component

검색결과 334건 처리시간 0.027초

혈관내피세포에서 Vascular Cell Adhesion Molecule-1 발현에 대한 혈장 지단백의 효과 (Effects of Plasma Lipoproteins on Expression of Vasular Cell Adhesion Molecule- in Human Microvasuclar Endothelial Cells)

  • 박성희
    • Journal of Nutrition and Health
    • /
    • 제31권8호
    • /
    • pp.1235-1243
    • /
    • 1998
  • Although an elevated plasma level of high density lipoprotein (HDL) is known as a protective component against the development of atherosclerosis and ensuing coronary heart diseases, the related mechanisms are still not established . It has been clearly demonstrated in the early stages of atherogenesis that adhesion of monocytes and lymphocytes to the vascular endothelium is enhanced via adhesion molecules, and that monocytes and macrophages accumulate in the subendothelial space. The present study has investigated whether isolated plasma HDL plays a role in protection against atherogenesis by inhibiting the expression of vascular cell adhesioin molecule-1(VCAM-1) on the endothelial cells. Effects of plasma native low density lipoprotein (LDL) and ac ethylated LDL(AcLDL) on VCAM-1 expression were also examined by using an immunocytochemical technique. While plasma HDL did not alter the basal expression of VCAM-1 , lipopolysaccharide(LPS) induction of this adhesion modlecule was markedly inhibited at a phyaiological concentration of HDL. In contrast, 30$\mu\textrm{g}$ protein/ml AcLDL increased sifnificantly both basal VCAM-1 expression and its LPD induction , suggesting that this modified LDL enhances leukocyte adhesiion to endothelial cells. Unlike AcLDL , plasma native LDL inhibited significantly VCAM-1 expression. This indicates that LDL did not undergo oxidative modificantion while incubated with endothelial cells. These results suggest that plasam HDL may inhibit atherogenesis by reducing the expression of adhesion molecules, which is a protective mechanism independent of tis reverse cholesterol transport function . Modified LDL is a potent iducer for adhesion molecules in vascular endothelical cells and could play a role in the pathogenesis of atherosclerosis by adhering to blood cells.

  • PDF

Investigation on nanoadhesive bonding of plasma modified titanium for aerospace application

  • Ahmed, Sabbir;Chakrabarty, Debabrata;Mukherjee, Subroto;Joseph, Alphonsa;Jhala, Ghanshyam;Bhowmik, Shantanu
    • Advances in aircraft and spacecraft science
    • /
    • 제1권1호
    • /
    • pp.1-14
    • /
    • 2014
  • Physico-chemical changes of the plasma modified titanium alloy [Ti-6Al-4V] surface were studied with respect to their crystallographic changes by X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM).The plasma-treatment of surface was carried out to enhance adhesion of high performance nano reinforced epoxy adhesive, a phenomenon that was manifested in subsequent experimental results. The enhancement of adhesion as a consequence of improved spreading and wetting on metal surface was studied by contact angle (sessile drop method) and surface energy determination, which shows a distinct increase in polar component of surface energy. The synergism in bond strength was established by analyzing the lap-shear strength of titanium laminate. The extent of enhancement in thermal stability of the dispersed nanosilica particles reinforced epoxy adhesive was studied by Thermo Gravimetric Analysis (TGA), which shows an increase in onset of degradation and high amount of residuals at the high temperature range under study. The fractured surfaces of the joint were examined by Scanning electron microscope (SEM).

KSTAR 토카막 진공용기 및 플라즈마 대향 부품의 탈기체 처리를 위한 가열 해석 (The baking analysis for vacuum vessel and plasma facing components of the KSTAR tokamak)

  • 이강희;임기학;조승연;김종배;우호길
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.247-254
    • /
    • 2000
  • The base pressure of vacuum vessel of the KSTAR (Korea Superconducting Tokamak Advanced Research) Tokamak is to be a ultra high vacuum, $10^{-6}{\sim}10^{-7}Pa$, to produce clean plasma with low impurity containments. For this purpose, the KSTAR vacuum vessel and plasma facing components need to be baked up to at least $250^{\circ}C,\;350^{\circ}C$ respectively, within 24 hours by hot nitrogen gas from a separate baking/cooling line system to remove impurities from the plasma-material interaction surfaces before plasma operation. Here by applying the implicit numerical method to the heat balance equations of the system, overall temperature distributions of the KSTAR vacuum vessel and plasma facing components are obtained during the whole baking process. The model for 2-dimensional baking analysis are segmented into 9 imaginary sectors corresponding to each plasma facing component and has up-down symmetry. Under the resulting combined loads including dead weight, baking gas pressure, vacuum pressure and thermal loads, thermal stresses in the vacuum vessel during bakeout are calculated by using the ANSYS code. It is found that the vacuum vessel and its supports are structurally rigid based on the thermal stress analyses.

  • PDF

Influence of Inductively Coupled Oxygen Plasma on the Surface of Poly(ether sulfone)

  • Lee, Do Kyung;Sohn, Young-Soo
    • 센서학회지
    • /
    • 제31권4호
    • /
    • pp.214-217
    • /
    • 2022
  • The effect of inductively coupled plasma (ICP) treatment with O2 gas on the surface properties of poly(ether sulfone) (PES) was investigated. X-ray photoelectron spectroscopy (XPS) was used to analyze the chemical characteristics of the O2 plasma-treated PES films. The surface roughness of the pristine and O2 plasma-treated PES films for different RF powers of the ICP was determined using an atomic force microscope (AFM). The contact angles of the PES films were also measured, using which the surface free energies were calculated. The O1s XPS spectra of the PES films revealed that the number of polar functional groups increased following the O2 plasma treatment. The AFM analysis showed the average surface roughness increased from 1.01 to 4.48 nm as the RF power of the ICP was increased. The contact angle measurements revealed that the PES films became more hydrophilic as the RF power of the ICP was increased. The total surface energy increased with the RF power of the ICP, resulting from the increased polar energy component.

반도전성 실리콘 고무의 표면 특성과 접착특성에 미치는 플라즈마 처리의 영향 (The Effect of Plasma Treatment on Surface Properties and Adhesion Characteristics of semiconductive Silicone Rubber)

  • 황선묵;홍주일;황청호;허창수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.254-255
    • /
    • 2005
  • In this work, the effects of plasma treatment on surface properties of semi conductive silicone rubber were investigated in terms of X-ray photoelectron spectroscopy(XPS). The adhesion characteristics of semiconductive-insulating interface layer of silicone rubber were studied by measuring the T-peel strengths. As a result, semiconductive silicone rubber surfaces treated with plasma discharge led to and increase in oxygen-containing functional groups, resulting in improving the degree of adhesion of the semiconductive-insulating interface layer of silicone rubber. these results are probably due to the modifications of surface functional groups or polar component of surface free energy of the semi conductive silicone rubber.

  • PDF

치과용 레진 연마를 위한 바렐 연마재의 성분 분석 및 표면 잔류물 관찰 (Component and surface residue observation of barrel finishing media for grinding dental resins)

  • 정안나;박유진;최성민
    • 대한치과기공학회지
    • /
    • 제43권4호
    • /
    • pp.145-152
    • /
    • 2021
  • Purpose: This study aimed to produce resin prosthetics using a dental barrel finishing machine. For dental resin grinding, the ingredients of the barrel finishing media were analyzed, and surface residues of the resin were observed. Methods: Two types of barrel finishing media for dental resin grinding were tested. Specimens were made from thermal polymerized, auto polymerized, and photopolymerized resins. Finishing media were analyzed through energy-dispersive X-ray spectroscopy (EDS) component analysis and inductively coupled plasma-optical emission spectrometry (ICP-OES) component analysis. Then, the prepared specimen was barrel finished for 25 minutes using two types of barrel finishing media, and scanning electron microscope was photographed to observe the surface residues. Results: As a result of EDS component analysis, both types of finishing media were analyzed for the components of C, O, Zr and Al elements, and industry media (IM) was further analyzed for the components of Si and Mg elements. In the ICP-OES component analysis, Cd and As, which are harmful elements, were detected in IM, and no harmful elements were detected in manufacturing media (MM). Because of observation of surface residues, no residues were observed in the three types of resin specimens that were barrel finished with two types of finishing media. Conclusion: Surface residue wasn't observed on the specimens polished using two types of finishing media. However, in IM, Cd and As, which are harmful elements, were detected, making it inappropriate for clinical use. In MM, harmful elements were not detected; therefore, clinical use will be possible.

Multi-Secondary Transformer: A Modeling Technique for Simulation - II

  • Patel, A.;Singh, N.P.;Gupta, L.N.;Raval, B.;Oza, K.;Thakar, A.;Parmar, D.;Dhola, H.;Dave, R.;Gupta, V.;Gajjar, S.;Patel, P.J.;Baruah, U.K.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권1호
    • /
    • pp.78-82
    • /
    • 2014
  • Power Transformers with more than one secondary winding are not uncommon in industrial applications. But new classes of applications where very large number of independent secondaries are used are becoming popular in controlled converters for medium and high voltage applications. Cascade H-bridge medium voltage drives and Pulse Step Modulation (PSM) based high voltage power supplies are such applications. Regulated high voltage power supplies (Fig. 1) with 35-100 kV, 5-10 MW output range with very fast dynamics (${\mu}S$ order) uses such transformers. Such power supplies are widely used in fusion research. Here series connection of isolated voltage sources with conventional switching semiconductor devices is achieved by large number of separate transformers or by single unit of multi-secondary transformer. Naturally, a transformer having numbers of secondary windings (~40) on single core is the preferred solution due to space and cost considerations. For design and simulation analysis of such a power supply, the model of a multi-secondary transformer poses special problem to any circuit analysis software as many simulation softwares provide transformer models with limited number (3-6) of secondary windings. Multi-Secondary transformer models with 3 different schemes are available. A comparison of test results from a practical Multi-secondary transformer with a simulation model using magnetic component is found to describe the behavior closer to observed test results. Earlier models assumed magnetising inductance in a linear loss less core model although in actual it is saturable core made-up of CRGO steel laminations. This article discusses a more detailed representation of flux coupled magnetic model with saturable core properties to simulate actual transformers very close to its observed parameters in test and actual usage.

Study of PSII-treated PMMA, PHEMA, and PHPMA ; Investigation of Their Surface Stabilities

  • Hyuneui Lim;Lee, Yeonhee;Seunghee Han;Jeonghee Cho;Moojin suh;Kem, Kang-Jin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.204-204
    • /
    • 1999
  • The plasma source ion implantation(PSII) technique which is a method using high negative voltage pulse in plasma system has the potential to change the surface properties of polymer. PSII technique increase the surface free energy by introducing polar functional groups on the surface so that it improves reactivity, hydrophilicity, adhension, biocompatability, etc. However, the mobility of polymer chains enables the modified surface layers to adapt their composition to interfacial force. This hydrophobic recovery interrupts the stability of modified surfaces to keep for the long time. In this study, poly(methyl methacrylate)(PMMA), poly(2-hydroxyethyl methacrylate)(PHEMA), and polu(2-hydroxypropyl methacylate)(PHPMA) for contact lens application, were modified to improve the wettability with PSII technique and were investigated the surface stabilities. Polymer film was prepared with solution casting(3 wt.% solution) and was annealed at 11$0^{\circ}C$ under vacuum oven to remove solvent completely and to eliminate physical ageing. The thickness of the film measured by scanning electron microscopy (SEM) and surface profilometer was about 10${\mu}{\textrm}{m}$. Polymers were treated with different kinds of gases, pulse frequency, pulse with, pulse voltage, and treatment time. Even though PMMA, PHEMA, and PHPMA have similar repeat unit structure, the optimal treatment conditions and the tendency to hydrophobic recovery were different. PHPMA, more hydrophilic polymer than PMMA and PHEMA showd better wettability and stability after mild treatment. Surface tensions were obtained by water and diiodomethane contact angle measurements to monitor the relation between hydrophobic recovery and polymer structure. Different ion species in plasma change the polar component and dispersion component of polymer surface. For better wettability surface, the increase of polar component was a dominant factor. We also characterized modified polymer surfaces using x-ray photoelectron spectroscopy(XPS), secondary ion mass spectrometry(SIMS), Fourier Transform infrared spectroscopy(FT-IR), and SEM.

  • PDF

선박용 플랫바의 자동 네스팅 및 가스/플라즈마에 의한 NC 절단 (Automatic Nesting and NC Cutting of Flat-Bar)

  • 이철수;박광렬
    • 산업공학
    • /
    • 제9권3호
    • /
    • pp.283-297
    • /
    • 1996
  • The 'flat-bar' is a stiffener which is a component of ships. It is basically a long rectangle and has 'end-cut' shapes at both sides. The paper describes a fast nesting algorithm of the flat-bar, and a procedure to generate cutting path of gas/plasma torch, which is operated by a NC (numerically controlled) gas/plasma cutting machine. Proposed procedures are written in C-language and executable on VAX machine with Open VMS operating system.

  • PDF

플라즈마 처리에 의한 양액 성분 변화 (Change of Hydroponic Components by Plasma Treatment)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제21권3호
    • /
    • pp.363-368
    • /
    • 2012
  • The influence of plasma discharge on the nutrient components ($NO_3$-N, $NH_4$-N, $PO_4$-P, K, Ca, and Mg) and water quality [pH, ORP (oxidation-reduction potential) and electric conductivity] of hydroponic water were investigated. It was observed that the $NH_4$-N, $PO_4$-P, K, Ca, and Mg were kept at the constant concentrations for plasma discharging of 90 min. On the other hand, $NO_3$-N concentration was increased with proceeding of the plasma discharge. The increase of $NO_3$-N concentration was considered with the fact that nitric acid was created from nitrogen among supplying air for the insulation of inside of dielectric barrier. ORP and electric conductivity was increased with plasma discharging time. However, pH was decrease with what because of the generation of the nitric acid. When adjusting the hydroponic ingredients, pH and conductivity must to be considered because of the change of pH and conductivitiy with the discharging.