• Title/Summary/Keyword: plasma arc melting

Search Result 42, Processing Time 0.021 seconds

A Study on the Formation of Functionally Composite Layer on Al Alloy Surface by Plasma Transferred Arc Overlaying Process (Plasma Transferred Arc 오버레이법에 의한 Al 합금 표면층의 복합기능화에 관한 연구)

  • 임병수;황선효;서창제
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.107-115
    • /
    • 1999
  • The objective of this research was to study the formation of the thick hardened layer with the addition of metal powder(Cu) and ceramics powders(TiC) on the aluminum 5083 alloys by plasma transferred arc process(PTA process) and to characterize the effect of overlaying conditions on the overlaid layer formation. This was followed by investigating the microstructures of the overlaid layers and mechanical properties such as hardness and wear resistance. The overlaid layer containing copper powder was alloyed and intermetallic compound($CuAl_2$) was formed. The overlaid layers with high melting point TiC powders, however, did not react with base metal. Wear resistance of the alloyed layer was remarkably improved by the formation of $CuAl_2$, precipitate phase, which prevented wear of base aluminum alloys and at higher wear speed, accelerated sliding of the counter part. Wear resistance of the composite layer was also remarkably improved because TiC powder act as a load barring element and Fe debris fragments detached from the counter part act as a solid lubricant on the contact surface.

  • PDF

Basic Studies on the Plasma Waste Treatment (플라즈마 폐기물 처리 기초기술 개발)

  • Lee, H.S.;Cho, J.H.;Choi, Y.W.;Kim, J.S.;Cho, J.K.;Rim, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1660-1662
    • /
    • 1997
  • High temperature arc plasma technologies are recently being developed in Europe, Japan and United States as one or the treatment schemes of municipal wastes, industrial wastes and vitrification of low level radioactive wastes. An experimental plasma melting furnace, a transferred type plasma torch and 100kW class power supply have been made. Operation of this system and some basic experimental results for solid wastes treatment are reported.

  • PDF

The Effects of Start Block and Arc Length on Melt Through and Unmelted Zone at Welding Start in High Speed Plasma Arc Welding of Thin Plate (박판 고속 플라즈마 맞대기 용접에서 용접 시작부의 용락과 미용융에 미치는 시작블록과 아크길이의 영향)

  • Chu, Yong-Su;Hong, Seong-Joon;Jung, Jae-Pil;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.26 no.2
    • /
    • pp.92-97
    • /
    • 2008
  • In welding of thin plate, some defects such as melt through and unmelted zone occur easily at welding start, however there is a limited study on those problems. Therefore the effects of start block and arc length on melt through and unmelted zone at start were investigated in this study. When start block height was lower than base metal, there was melt through at start. And when the height was even with base metal, no unmelted zone existed. Unmelted zone was increased as start block height increased from 0mm to 0.5mm. However unmelted zone was not much changed as the height increasing from 0.5mm to 1.0mm. When gap existed between start block and base metal, melt through occurred. However, unmelted zone was increased as the contact force of start block on base metal was increased from 0kgf to 7.5kgf. And when arc length was decreased from 3.8mm to 3.0mm, unmelted zone was decreased. It was concluded that the optimum condition to prevent melt through and to minimize unmelted zone would be with start block height 0.25mm, contact force 3.0kgf, and arc length 3.4mm. This optimum condition was applied to the mass production line and resulted in satisfied outcome.

Fabrication of textured Ni substrates for coated conductor prepared by powder metallurgy and plasma arc melting method (분말법과 주조법으로 제조한 coated conductor용 Ni 기판 개발)

  • 임준형;김정호;김규태;장석헌;주진호;나완수;홍계원;지봉기;김찬중
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.70-74
    • /
    • 2003
  • We fabricated cube textured Ni substrate for YBCO coated conductor and evaluated the effects of processing parameters on microstructural evolution and texture formation. Ni-rods as an initial specimen were prepared by two different methods, i.e., powder metallurgy(PM) and plasma arc melting(PAM). Subsequently, the rods were cold rolled to 100 $\mu\textrm{m}$ thick substrate and annealed at temperatures of $700∼1200^{\circ}C$. The texture of the substrate was characterized by pole-figure. It was observed that the texture of substrate made by P/M did not significantly varied with annealing temperature of 600∼$l100^{\circ}C$ and the full-width at half-maximums (FWHM) of both in-plane and out-of-plane were 9$^{\circ}$$10^{\circ}$. On the other hand, the texture of substrate made by PAM was more dependent on the annealing temperature and the corresponding values were $9^{\circ}$$13^{\circ}$ at the temperature range. In addition, recrystallization twin texture, (221)<221>, was formed as the temperature increased further. OM profiles showed that the grain size of substrate made by P/M was smaller than that made by PAM and this difference was correlated to the microstructure of initial specimens.

  • PDF

Fabrication of Aluminum Nitride Reinforced Aluminum Matrix Composites via Plasma Arc Melting under Nitrogen Atmosphere (플라즈마 아크 용해 공정으로 자발합성된 질화알루미늄 강화 알루미늄기지 복합재료의 개발)

  • Sujin Jeong;Je In Lee;Eun Soo Park
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.101-107
    • /
    • 2023
  • In this study, aluminum nitride (AlN) reinforced aluminum (Al) matrix composites are fabricated via plasma arc melting under a nitrogen atmosphere. Within a minute of the chemical reaction between Al and N, dispersed AlN with the shape of transient and lamellar layers is in situ formed in the Al matrix. The composite contains 10 vol.% AlN reinforcements with low thermal resistance and strong bonding at the interfaces, which leads to the unique combination of thermal expansivity and conductivity in the resulting composites. The coefficient of thermal expansion of the composite can be further reduced when Si was alloyed into the Al matrix, which proposes the potential of the in situ Al matrix composites for thermal management applications.

CaO Crucible Induction Melting and Investment Casting of TiAl Alloys (TiAl 합금의 CaO 도가니 유도용융 및 정밀주조)

  • Kim, Myoung-Gyun;Sung, Si-Young;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.22 no.2
    • /
    • pp.75-81
    • /
    • 2002
  • The main objectives were to investigate the suitability of CaO crucible for melting TiAl alloys and to develop investment mold for investment casting of TiAl alloys. TiAl alloy specimen were prepared by plasma arc furnace under argon atmosphere. After melting of TiAl alloy using CaO crucible, the results showed that there is little contamination of oxygen in the TiAl bulk. Conventional vacuum induction furnaces can be readily adaptable to produce cast parts of TiAl without high skilled techniques. The determination of optical metallography and microhardness profiles in investment cast TiAl alloy rods has allowed the gradation of the relative thermal stability of the oxides examined. The molds used for the present study were $ZrO_2$, $Al_2O_3$, CaO stabilized $ZrO_2$ and $ZrSiO_4$. Even although high temperature of mold preheating, $Al_2O_3$ mold is a promising mold material for investment casting of TiAl alloys in terms of thermal stability, cost and handling strength. It is important to take thermal stability and preheating temperature of mold into consideration for investment casting of TiAl alloys.

Microstructure Characterization of Nb-Si-B alloys Prepared by Spark Plasma Sintering Process (방전 플라즈마 소결(Spark Plasma Sintering) 방법에 의해 제조된 Nb-Si-B계 합금의 미세조직 특성)

  • Kim, Sang-Hwan;Kim, Nam-Woo;Jeong, Young-Keun;Oh, Sung-Tag;Kim, Young Do;Lee, Seong;Suk, Myung Jin
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.426-431
    • /
    • 2015
  • Microstructural examination of the Nb-Si-B alloys at Nb-rich compositions is performed. The Nb-rich corner of the Nb-Si-B system is favorable in that the constituent phases are Nb (ductile and tough phase with high melting temperature) and $T_2$ phase (very hard intermetallic compound with favorable oxidation resistance) which are good combination for high temperature structural materials. The samples containing compositions near Nb-rich corner of the Nb-Si-B ternary system are prepared by spark plasma sintering (SPS) process using $T_2$ and Nb powders. $T_2$ bulk phase is made in arc furnace by melting the Nb slug and the Si-B powder compact. The $T_2$ bulk phase was subsequently ball-milled to powders. SPS is performed at $1300^{\circ}C$ and $1400^{\circ}C$, depending on the composition, under 30 MPa for 600s, to produce disc-shaped specimen with 15 mm in diameter and 3 mm high. Hardness tests (Rockwell A-scale and micro Vickers) are carried out to estimate the mechanical property.

Separation Technology of Pure Zirconia from Zirconsand by the Ar-H2 Arc Plasma Fusion and Sulfuric Acid Leaching with Microwave Irradiation (Ar-H2플라즈마 건식제련과 마이크로웨이브침출을 통한 지르콘샌드로부터 고순도 지르코니아 분리)

  • Lee, Jeong-Han;Hong, Sung-Kil
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.49-54
    • /
    • 2016
  • In this study, zircon sand is separated into zirconia and silica by using the Ar-$H_2$ arc plasma refining. And then silica is removed from it by the microwave leaching method to produce a high pure zirconia. Plasma melting consist of two sequential processes; reduction process with Ar gas only followed by refining process with Ar-$H_2$ gas. After cooling in chamber. The solid phase obtained at $240^{\circ}C$ were found to be composed of 20% sulfuric acid solution. The solution was used as a leaching solution with microwave irradiation to obtain a high purity zirconia.

Effects of Plasma-Nitriding on the Pitting Corrosion of Fe-30at%Al-5at%Cr Alloy (Fe-30at.%Al-5at.%Cr계 합금의 공식특성에 미치는 플라즈마질화의 영향)

  • 최한철
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.480-490
    • /
    • 2003
  • Effects of plasma-nitriding on the pitting corrosion of Fe-30at%Al-5at%Cr alloy containing Ti, Hf, and Zr were investigated using potentiostat in 0.1M HCl. The specimen was casted by the vacuum arc melting. The subsequent homogenization was carried out in Ar gas atmosphere at $1000^{\circ}C$ for 7days and phase stabilizing heat treatment was carried out in Ar gas atmosphere at $500^{\circ}C$ for 5 days. The specimen was nitrided in the $N_2$, and $H_2$, (1:1) mixed gas of $10^{-4}$ torr at $480^{\circ}C$ for 10 hrs. After the corrosion tests, the surface of the tested specimens were observed by the optical microscopy and scanning electron microscopy(SEM). For Fe-30at%Al-5Cr alloy, the addition of Hf has equi-axied structure and addition of Zr showed dendritic structure. For Fe-30at%Al-5Cr alloy containing Ti, plasma nitriding proved beneficial to decrease the pitting corrosion attack by increasing pitting potential due to formation of TiN film. Addition of Hf and Zr resulted in a higher activation current density and also a lower pitting potential. These results indicated the role of dendritic structure in decreasing the pitting corrosion resistance of Fe-30Al-5Cr alloy. Ti addition to Fe-30Al-5Cr decreased the number and size of pits. In the case of Zr and Hf addition, the pits nucleated remarkably at dendritic branches.

Plasma Electrolytic Oxidation of Ti-25Ta-xHf for Dental Implants (치과임플란트용 Ti-25Ta-xHf 합금의 플라즈마 전해 산화)

  • Kim, Jeong-Jae;Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.344-353
    • /
    • 2018
  • Plasma electrolytic oxidation of Ti-25Ta-xHf alloy in electrolyte containing Ca and P for dental implants was investigated using various experimental techniques. Ti-25Ta-xHf (x=0 and 15 wt.%) alloys were manufactured in an arc-melting vacuum furnace. Micropores were formed in PEO films on Ti-25Ta-xHf alloys in 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at 240 V, 270 V and 300 V for 3 min, respectively. The microstructure of Ti-25Ta-xHf alloys changed from (${\alpha}^{\prime}+{\alpha}^{{\prime}{\prime}}$) phase to (${\alpha}^{{\prime}{\prime}}+{\beta}$) phase by addition of Hf. As the applied potential increased, the number of pore and the area ratio of occupied by micro-pore decreased, whereas the pore size increased. The anatase phase increase as the applied potential increased. Also, the crystallite size of anatase-$TiO_2$ can be controlled by applied voltage.