• Title/Summary/Keyword: plasma actuator

Search Result 33, Processing Time 0.021 seconds

Analysis and Performance Evaluation of DBD Actuator for Plasma Flow Control (플라즈마 유동 제어를 위한 DBD 엑츄에이터 해석 및 성능평가)

  • Lee, Chang-Wook;Yun, Su-Hwan;Kim, Tae-Gyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.290-293
    • /
    • 2012
  • The analysis and performance evaluation of DBD actuator for plasma flow control was described. The experimental apparatus was designed to measure the flow velocity as the discharge conditions, and to find out the optimal discharge condition of the DBD actuator. The average-velocity increased with increasing the discharge voltage. The experimental results was compared with CFD analysis.

  • PDF

Wind Tunnel Test of 2D Model for Plasma Flow Control using DBD Plasma Actuator (DBD 플라즈마 구동기를 이용한 2차원 모델의 플라즈마 유동제어 풍동시험)

  • Yun, Su-Hwan;Kim, Tae-Gyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.527-528
    • /
    • 2012
  • DBD (Dielectric Barrier Discharge) plasma actuator was designed for aerodynamic drag reduction using plasma flow control, and the drag reduction was measured by wind-tunnel tests using 2D test model. At the zero wind velocity, the plasma flow control had no effect on the drag reduction because the flow separation and surface friction drag were not occurred. At the wind velocity of 2m/s, 9.7% of drag was reduced by the flow separation control. The drag reduction decreased as the wind velocity increased.

  • PDF

Effect of Plasma Area on Frequency of Monostatic Radar Cross Section Reduction

  • Ha, Jungje;Shin, Woongjae;Lee, Joo Hwan;Kim, Yuna;Kim, Doosoo;Lee, Yongshik;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.153-158
    • /
    • 2017
  • This work reports on the effect of plasma area on the frequency characteristics of the monostatic radar cross section (RCS) of a square metallic plate. A dielectric barrier discharge (DBD) plasma actuator consisting of 10 rings is proposed. The actuator is fabricated in three different configurations such that only three inner rings, seven inner rings, and all rings can be biased. By applying an 18-kV bias at 1 kHz, the three types of DBD actuators generate plasma with a total area of 16.96, 36.74, and $53.69cm^2$, respectively, in a ring or circular form. The experimental results reveal that when the DBD actuator is placed in front of a $20mm{\times}20cm$ conducting plate, the monostatic RCS is reduced by as much as 18.5 dB in the range of 9.41-11.65 GHz. Furthermore, by generating the plasma and changing the area, the frequency of maximum reduction in the monostatic RCS of the plate can be controlled. The frequency is reduced by nearly 20% in the X band when all rings are biased. Finally, an electromagnetic model of the plasma is obtained by comparing the experimental and full-wave simulated results.

CONTROL OF CIRCULAR CYLINDER WAKE USING PLASMA ACTUATION (플라즈마 가진에 의한 원형 실린더 후류의 제어)

  • Kim, Dong-Joo
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 2012
  • Numerical simulations are carried out for flow over a circular cylinder controlled by the momentum forcing which is generated by a pair of plasma actuators symmetrically mounted on the cylinder surface. A popular and empirical plasma model is used for the spatial distribution of momentum forcing. In this study, we consider two different types of actuation, i.e., steady and unsteady (or pulsed) actuation. In the unsteady actuation, the actuation is turned on and off periodically, its frequency being a control parameter. The objective of this study is to investigate the effects of actuator location and actuation frequency on the flow structures and the forces on the cylinder. Results show that the cylinder wake can be effectively controlled by proper actuator location. For example, when the actuators are located at $120^{\circ}$ from the stagnation point, vortex shedding is completely suppressed with the boundary layer almost fully attached to the surface, resulting in drag reduction and lift elimination.

Analysis of Electromagnetic Wave Scattering Characteristics of Dielectric Barrier Discharge Plasma (유전체 장벽 방전 플라즈마의 전자파 산란 특성 분석)

  • Lee, Soo-Min;Oh, Il-Young;Hong, Yong-Jun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.324-330
    • /
    • 2013
  • This paper presented measurement results of scattering characteristics of dielectric barrier discharge (DBD) plasma at atmospheric pressure. In this paper, plasma actuator is fabricated by parallel connecting of basic configuration of DBD plasma actuator, then plasma could be generated by applying 14 kV, 4 kHz of high voltage generator. In order to measure the scattering characteristics of DBD plasma, in this paper, two horn antennas and vector network analyzer are used to compare the S-parameter. Because of the structure of fabricated plasma generator, different result is obtained as antenna polarization changes. When antenna polarization is parallel to electrodes of plasma generator, the scattered field is reduced by 2 dB in maximum. In addition, for parallel polarization case, PEC is set up behind the plasma generator to measure backward scattered field. When the observation angles are $40^{\circ}C$ and $60^{\circ}C$, the amount of reduced scattered field is 2 dB in maximum at 5 GHz.

Effect of the Flow Actuator on the Asymmetric Vortex at High Angle of Attack (고받음각 오자이브의 비대칭 와류에 작용하는 구동기 효과 분석)

  • Lee, Eunseok;Lee, Jin Ik;Lee, Kwang Seop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.607-612
    • /
    • 2013
  • The effect of the flow actuator on the asymmetric vortex structure around the ogive-cylinder body with fineness ratio of 4 flying at the speed of Mach 0.1 at angle of attack of 50 degree is studied. The ogive-cylinder model is developed with the actuator placed near the nose tip and numerically simulated using the in-house CFD code named KFLOW. The numerical simulation employs two different actuator modeling: one is the boundary condition given by blowing normal to the surface and another shearing on the surface. The numerical simulation reveals that response of the vortex structure to the actuation is dependent on the type of modeling as well as the strength and direction of the actuation.

Radar Cross Section Reduction by Planar Array of Dielectric Barrier Discharge Plasma under Atmospheric Pressure (평면 배열 유전체 장벽 방전 플라즈마 발생기의 대기압에서의 레이다 단면적 감소 효과)

  • Kim, Yuna;Kim, Sangin;Kim, Doo-Soo;Lee, Yongshik;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.8
    • /
    • pp.646-652
    • /
    • 2017
  • The effect of plasma on mono-static radar cross section under atmospheric pressure is demonstrated when the dielectric barrier discharge actuator has plasma layer. The volume of plasma layer is increased by using planar array of electrodes. Because the incident wave has electric field which is perpendicular to the electrode array, the undesired effect on radar cross section caused by structure of plasma actuator is minimized. In experiments, mono-static radar cross section is measured at the frequencies from 2 GHz to 25 GHz. The generated plasma reduces the radar cross section at frequencies above 18 GHz, and the amount of reduction reaches to 8 dB in maximum. The reduction can be controlled by changing the peak-to-peak voltage from high voltage generator. The result shows the possibility of plasma as a flexible radar cross section controller.

Interfacial Durability and Acoustic Properties of Transparent xGnP/PVDF/xGnP Graphite Composites Film for Acoustic Actuator (음향 작동기를 위한 투명한 xGnP/PVDF/xGnP 그래핀 복합재료 필름의 계면 내구성 및 음향 특성)

  • Gu, Ga-Young;Wang, Zuo-Jia;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.25 no.3
    • /
    • pp.70-75
    • /
    • 2012
  • Interfacial durability and electrical properties of CNT, ITO or xGnP coated PVDF nanocomposites were investigated for acoustic actuator applications. The xGnP coated PVDF nanocomposite exhibited better electrical conductivity than CNT and ITO case due to the unique electrical property of xGnP, and this nanocomposite also showed good sound characteristics. Interfacial adhesion durability between either neat CNT or plasma treated CNT and plasma treated PVDF were measured by static contact angle, surface energy, work of adhesion, and spreading coefficient tests. The optimum acoustic actuation performance of xGnP coated PVDF nanocomposite was measured using sound level meter with changing radius of curvature and coating conditions. As compared to CNT and ITO, the xGnP was known as more appropriate acoustic actuator due to the characteristic electrical property. It is the most appropriate condition when the radius of curvature is 15 degree. Although sound characteristics were different with various coating thicknesses, it is possible to manufacture transparent actuator with good sound quality.

Development of Target-Controlled Infusion system in Plasma Concentration. PART2: Design and Evaluation (혈중 목표 농도 자동 조절기(TCI) 개발 PART2: 시스템 구현 및 평가)

  • 안재목
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.45-53
    • /
    • 2003
  • Based on the 4-compartmental pharmacokinetic model developed in PART1, target-controlled infusion(TCI) pump system was designed and evaluated. The TCI system consists of digital board including microcontroller and digital signal process(DSP), analog board, motor-driven actuator, user friendly interface, power management and controller. It provides two modes according to the drugs: plasma target concentration and effect target concentration. Anaesthetist controls the depth of anaesthesia for patients by adjusting the required concentration to maintain both plasma and effect site in drug concentration. The data estimated in DSP include infusion rate, initial load dose, and rotation number of motor encoder. During TCI operation, plasma concentration. effect site concentration, awaken concentration, context-sensitive decrement time and system error information are displayed in real time. Li-ion battery guarantees above 2 hours without power line failure. For high reliability of the system, two microprocessors were used to perform independent functions for both pharmacokinetic algorithm and motor control strategy.

A Study on Analysis of J85 Engine V.G. Actuator Arm Shaft Crack

  • Hwang, Young-Ha;Son, Kyung-Sug;Kim, Tae-Gu
    • International Journal of Safety
    • /
    • v.8 no.1
    • /
    • pp.6-9
    • /
    • 2009
  • The crack in a J85 engine V.G. actuator arm shaft for a bell crank on the engine compressor was investigated. The crack was observed in twenty two shafts during the inspection of 238 shafts. The failure analysis of shaft cracks was performed by chemical composition analysis using ICP(Inductively Coupled Plasma) and by fracture surface and microstructure analysis using FE-SEM and optical microscope. The crack initiated from the top and bottom and propagated to the center along the grain boundaries. From the chemical composition analysis, the fractography of the fracture surface and the microstructure, it was found that the failure mechanism of the shafts is the inclusion-related intergranular decohesion crack. The inclusion was found out from MnS particle by EDS(Energy Dispersive Spectroscopy). The crack initiated MnS inclusion in the grain boundary and propagated with the increase of applied shear stress during long operation. In order to prevent the fracture, NDI(Nondestructive inspection) is needed periodically as recommended.