• Title/Summary/Keyword: plantlet production

Search Result 43, Processing Time 0.032 seconds

Bioceramic Effects to Enhance Secondary Metabolites Production in Tissue Culture of Some Medicinal Plants

  • Kim, Yu-Jeong;Hwang, Baik;Ahn, Jun-Cheul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.2
    • /
    • pp.118-122
    • /
    • 2004
  • We have investigated that a couple of soft ferrite ceramic powders having a spinal structure have shown the effect on growth and secondary metabolites production of some medicinal plants cultured in vitro. The addition of the ceramic powders as bare state to culture medium has stimulated the growth of Achyranthes japonica callus and plantlet, adventitious root of Hyoscyamus niger and Platycodon grandiflorum hairy root about 65, 75, 150 and 50%, respectively. Whereas Centella asiatica callus and plantlet, Scopolia parviflora hairy root, and Hyoscyamus albus adventitious root were not affected markedly. Moreover, the ceramic powder has enhanced the growth of H. niger adventitious roots even under conditions of irradiating alone without any direct contact between ceramic powder and media. Based on growth stimulation effect, the ceramic powders have enhanced the gross production of tropane alkaloid in H. niger adventitious root, and polyacetylene in P. grandiflorum hairy root about 35 and 30%, respectively.

Effect of picloram and 2,4-D on plant regeneration from mature and immature embryos of moroccan durum wheat varieties

  • Ahansal, Khadija;Aadel, Hanane;Udupa, Sripada Mahabala;Gaboun, Fatima;Abdelwahd, Rabha;Ibriz, Mohammed;Iraqi, Driss
    • Journal of Plant Biotechnology
    • /
    • v.49 no.2
    • /
    • pp.131-138
    • /
    • 2022
  • An efficient genetic transformation protocol is a fundamental requirement for high regeneration capacity from cultivated durum wheat (Triticum durum) varieties. In this study, wereportedtheeffectsoftwoauxins,2,4-dichlorophenoxyaceticacid(2,4-D)and4-amino-3,5,6-trichloropicoli nicacid(picloram), at a concentration of 2 mg/Laloneandincombination on the embryogenic callus and plantlet regeneration of four durum wheat varieties (Amria, Chaoui, Marouane, and Tomouh) using mature embryos (MEs) and immature embryos (ImEs). Significanteffectsofvariety,culturemedium(theauxinused),andvariety-mediuminteraction were observed on the callus weight and plantlet regeneration of both MR and ImE explants. The medium used for callus induction significantly affected plantlet regeneration (p < 0.001). Comparedto2,4-D, picloram led to a higher plantlet regeneration rate in both ME and ImE explants (19.8% and 40.86%, respectively). Plantlet regeneration also varied significantly depending on the variety and medium used. PicloramledtohighplantletregenerationofbothME and ImE explants in all varieties except Tomouh, which showed high plantlet regeneration of ME explants in 2,4-D. A comparison of ME and ImE responses indicated that ImEs are the best explants for high plantlet regeneration in durum wheat. Ourfindingssuggestthatpicloramisthebestauxin and should be used instead of 2,4-D due to its positive effect on increasing plant regeneration of durum wheat ME and ImE explants.

Ginkgolides Production in Embryo-derived Ginkgo biloba Plantlet (기내배양한 은행 유식물에서의 Ginkgolide의 생산)

  • Jeon, Mee-Hee;Sung, Sang-Hyun;Jeon, Soon-Hwa;Huh, Hoon;Kim, Young-Choong
    • Korean Journal of Pharmacognosy
    • /
    • v.24 no.4
    • /
    • pp.304-308
    • /
    • 1993
  • A platelet activating factor(PAF) antagonist ginkgolides produced from Ginkgo biloba are well known for their potential usage in septic shock and other PAF related diseases. Even though they are extracted from the leaves and on occasion the root bark, the exact biosynthetic site and pathway have not proved yet. In order to locate the enzymes involved and elucidate the biosynthetic site of the compounds, embryo-derived aseptic intact plantlet and plantlet without root have been cultured on 0.3% active carbon-containing solid Murashige and Skoog's medium. The leaves from the six-week-old normal plantlet contained similar amount of ginkgolide B to that of outdoor plant leaves, while the plantlets without root had less than 30% of the ginkgolide B compared to the in vitro intact plantlets. The results suggest that the ginkgolides may be synthesized in the root and transported to the aerial part.

  • PDF

Plant Regeneration from Unpollinated Ovary Culture in Allium tuberosum Rottl (부추의 미수분 자방배양에 의한 식물체 재분화)

  • 윤수진;손재근;권용삼
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.1
    • /
    • pp.37-40
    • /
    • 1999
  • This study was carried out to determine the optimal conditions for the production of plants derived from the unpollinated ovary culture of Chinese chive (Allium tuberosum Rottl.). The Chinese chive collected from Korea showed much higher frequency of plantlet formation than those from Japan in the culture of unpollinated ovaries. Among the collections, 'Youngiljaerae' showed the highest frequency of plantlet formation. The MS basal medium was superior to B/sub 5/ in plantlet formation. The ovaries inoculated on the 2,4-D-free medium were directly induced plantlets without callus formation. Floral parts inoculated as a unit played important roles in callus formation and plant production. The frequency of callus and plantlet formation was higher in the culture of ovary with anthers than that of ovary alone.

  • PDF

Effect of biocide addition on plantlet growth and contamination occurrence during the in vitro culture of blueberry

  • Huh, Yoon Sun;Lee, Joung Kwan;Kim, Ik Jei;Kang, Bo Goo;Lee, Ki Yeol
    • Journal of Plant Biotechnology
    • /
    • v.42 no.2
    • /
    • pp.111-116
    • /
    • 2015
  • Interest and great demand for blueberry (Vaccinium corymbosum) have increased, as V. corymbosum is now one of the most economically important crops in Korea. It is expected that blueberry production and the area planted for cultivation will increase consistently in the years ahead because of high profitability and the consumer's demand for healthy ingredients. Effective mass production of blueberry is urgently needed for commercial cultivation establishment, but a main limitation is lack of a propagation system that produces a disease-free plant material for commercial plantation. A large amount of research has focused entirely on developing tissue culture techniques for blueberry propagation. However, controlling fungal and bacterial contamination of woody plant material is extremely difficult. Our study was conducted to investigate the effect of biocide addition during the in vitro culture of blueberry on plantlet growth and contamination occurrence. Four biocides, including Plant Preservative Mixture ($PPM^{TM}$), vancomycin, nystatin and penicillin G, were used in varying concentrations during the in vitro propagation of blueberry. When nystatin was added into the medium at low concentrations, the overall growth of blueberry plantlets was retarded. Addition of vancomycin and penicillin G in high concentrations decreased contamination but induced plantlet mortality. On the other hand, when 1ml/L $PPM^{TM}$ was added, the growth characteristics of blueberry plantlets did not significantly differ from non-treatment (control), and the contamination occurrence rate was very low. From these results, we found that the addition of the appropriate biocide could provide an effective method to reduce contamination in the culture process, thereby raising in vitro production efficiency.

The apical bud as a novel explant for high-frequency in vitro plantlet regeneration of Perilla frutescens L. Britton

  • Hossain, H.M.M. Tariq;Kim, Yong-Ho;Lee, Young-Sang
    • Plant Biotechnology Reports
    • /
    • v.4 no.3
    • /
    • pp.229-235
    • /
    • 2010
  • In this study, we established an in vitro regeneration system to maximize the recovery of leafy perilla (Perilla frutescens L. Britton) plantlets as part of developing a molecular biotechnology-based metabolic engineering program for this crop plant. Hypocotyl segments including the apical buds were used as explants for the direct production of shoots without an interim callus phase. The number of shoots produced from the apical buds peaked within 3-4 weeks, and the shoots were subsequently cultured on Murashige and Skoog (MS) media supplemented with 2 mg $1^{-1}$ benzylaminopurine (BA). Spontaneous rhizogenesis was observed after 7-10 days of culture on MS media without hormonal additives. The rooted shoots developed into normal plants in soil after hardening on distilled water for 3-4 days. The average plantlet regeneration frequency was higher for the apical buds (64.33%) than for the top (15.66%), middle (4%), and basal (1.33%) segments of the hypocotyls. This regeneration system demonstrates a capacity for high-frequency plantlet recovery and thus should be considered for use in the genetic manipulation of leafy perilla.

DEVELOPMENT OF TRANSPLANT PRODUCTION IN CLOSED SYSTEM (PART II) - Irrigation Scheduling based on Evapotranspiration Rate-

  • Tateishi, M.;Murase, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.764-769
    • /
    • 2000
  • A new transplant production system that produces high quality plug seedlings of specific crop has been studied. It is a plant factory designed to produce massive amount of virus free seedlings. The design concept for building this plant factory is to realize maximum energy efficiency and minimum initial investment and running cost. The basic production strategy is the sitespecific management. In this case, the management of the growth of individual plantlet is considered. This requires highly automated and information intensive production system in a closed aseptic environment the sterilized specific crops. One of the key components of this sophisticated system is the irrigation system. The conditions that this irrigation system has to satisfy are: 1. to perform the site specific crop management in irrigation and 2. to meet the no waste standard. The objective of this study is to develop an irrigation scheduling that can implement the no waste standard.

  • PDF

Efficient Procedures for Direct Shoots Regeneration from Leaf Explants of Rehmania glutinosa Lib. (지황 잎조직 절편으로부터 신초 형성)

  • Hwang, Sung-Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.6
    • /
    • pp.273-277
    • /
    • 2005
  • Adventitious shoots were directly induced from leaf explants of R. glutinosa, an important medicinal plant. Proliferating shoot cultures were obtained by culturing leaf discs on Murashige and Skoog(MS) medium alone or combination with auxins and cytokinins. MS medium supplemented with 1 $mg/{\ell}\;BA\;and\;2\;mg/{\ell}$ IAA was the most effective, providing high shoot bud formation frequency without formation of intervening callus. The effect of leaf age on adventitious shoot formation was also investigated. The maximum shoot bud production (93.4%) was achived using 3rd leaf from apex of 6 weeks old plantlets after seed germination. Plantlet were rooted on an half-strength MS (1/2MS) medium containing 0.1 $mg/{\ell}\;IBA$. This prtocol is useful for clonal propagation and Agrobacterium-mediated transforamtion in R. glutinosa.

Detection of Lignans from Transformed Root Cultures of Schisandra chinensis Baillon (오미자의 형질전환된 근으로부터 리그난 화합물의 검출)

  • Hwang, Sung-Jin;Pyo, Byoung-Sik;Hwang, Baik
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.6
    • /
    • pp.448-453
    • /
    • 2004
  • Transformed roots of Schisandra chinensis were obtained following co-cultivation of in vitro cultivated plantlet segments with Agrobaterium rhizogens ATCC15834. This root was examined for its growth and gomisin J contents under various culture conditions. Among the six basal culture media tested, WPM (Lloyd & McCown, 1980) medium supplemented with 5% sucrose was the best roots growth 6.2 (g D.W/flask) and gomisin J accumulation 1.56 $(X10^{-3}\;ug/g\;D.W)$. Initial inoculum size correlated with the yield of biomass while gomisin J contents was not affect. Gomisin J production was influenced by the initial sucrose concentration and the highest production yield was achieved at the concentration of 7%. The optimal shaking speeds for roots growth and gomisin J production was 120 and 140 rpm, respectively.

Improvement of ex vitro acclimatization of mulberry plantlets by supplement of abscisic acid to the last subculture medium

  • Huh, Yoon Sun;Lee, Joung Kwan;Nam, Sang Young
    • Journal of Plant Biotechnology
    • /
    • v.44 no.4
    • /
    • pp.431-437
    • /
    • 2017
  • Mulberry (Morus sp.) of the family Moraceae is very economically important in Asian countries including Korea, because its leaf and fruit have been commercially used in sericulture and horticultural industries. Therefore it is necessary to develop the optimal production system for rapid and cost-effective propagation of mulberry. Our studies focused on establishing an acclimatization method for the successful plantlet production of new cultivar 'Cheongsu' which was transferred ex vitro after in vitro culture. In particular, effect of abscisic acid (ABA) addition into the last subculture medium on plantlet response to subsequent ex vitro transfer and its growth was investigated. During acclimatization, stomatal conductance and transpiration rate of ABA-pretreated plantlets were significantly lower than those of non-treated plantlets. Net photosynthetic rate of ABA-pretreated plantlets decreased after ex vitro transfer but increased after 14 days, and it was mostly higher than that of non-treated plantlets. Moreover, relative water content as well as chlorophyll contents and its ratio were also higher in ABA-pretreated plantlets. On the other hand, proline was considerably higher than in control plantlets. After 1 month of ex vitro transfer, survival rate of ABA-pretreated plantlets was 85.6%, which increased by 29.1% in comparison with control (56.5%). More vigorous growth was also observed in ABA-pretreated plantlets. From these results, it was found that application of ABA to the last subculture medium could improve acclimatization and promote survival of mulberry plantlets after ex vitro transfer, inducing water stress tolerance and alleviating abiotic stresses.