• Title/Summary/Keyword: planting date

Search Result 296, Processing Time 0.031 seconds

Effects of Planting Date and Density on Yield and It’s Components of Fritillaria thungergii MIQUEL (패모(貝母)의 파종기(播種期) 및 재식밀도(栽植密度)가 수양구성(收量構成) 형질(形質) 및 수양(收量)에 미치는 영향(影響))

  • Choi, In-Sik;Cho, Jin-Tae;Son, Seok-Yong;Park, Jae-Seong;Han, Dong-Ho;Jeong, In-Myeong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.4 no.3
    • /
    • pp.218-223
    • /
    • 1996
  • This experiment was carried out to investigate the effect of planting date and planting density on yield and yield components of Fritillariae bulbus from 1989 to 1991. The Chungbuk local variety was used, and the experimental materials were planted six times with 10 days interval from Aug. 20 to Oct. 10. 33, 22, 17 and 13 bulbs were planted by the square meter, respectively. The compound fertilizer for garlic $(N\;-\;P_2O\;-\;K_2O_5=9\;-\;14\;-\;10)$ was applied by 80kgs to the 0.1ha before planting. The experimental design was randomized block design with 3 replications. As the planting dates were earlier, the emerging dates were earlier, too. But the delay of 50 days in the planting affected to the delay of 14 days in the em­erging dates. The plant height was 22.7cms in the Aug. 20 plot. As the planting were later, the plant heights were shorter by $2.4{\sim}5.6cms$ than that. As compared with the 829kgs by the 0.1ha of Aug. 30 plot, the others recorded 1 percent increase in the Aug. 20 plot, 4 percent decrease in the Sep. 10 plot, 26 percent decrease in the Sep. 20 plot, 35 percent decrease in the Sep 30 plot, and 38 percent decrease in the Oct. 10 plot. So, the suitable planting dates were from Aug. 20 to Aug. 30.The emerging date of 33 bulb plot by the square meter was March 7, but as the planting densities were sparse, the emerging dates delayed by one to three days. The plant height of the 33 bulb plot by the square meter was 21. 8cms, but the other plots were short by $0.7{\sim}1.8cms$. The number of shoots of the 33 bulb plot by the square meter was 6.1. but the other plots recorded 0.4 increase in the 22 bulb plot, 0.6 increase in the 17 bulb plot and 0.5 increase in the 13 bulb plot compared with that of the 33 bulb plot. Accordingly, the number of shoots in the sparse planting plot was more than that in the dense planting plot. As compared with the 854kgs by the 0.1ha of the 22 bulb plot, the other plots recored 2 percent in­crease in the 33 bulb plot, 16 percent decrease in the 17 bulb plot and 34 percent decrease in the 13 bulb plot. All things considered, for the culture of Fritillaria thungergii MIQUEL in the middle region, Aug. 25 and 22 bulbs by the square meter were suitable for the planting date and density.

  • PDF

Growth and Yield Components Responses to Delayed Planting of Soybean in Southern Region of Korea (남부지역 콩 만파에 따른 품종별 생육 및 수량반응)

  • Park, Hyeon-Jin;Han, Won-Young;Oh, Ki-Won;Kim, Hyun-Tae;Shin, Sang-Ouk;Lee, Byong-Won;Ko, Jong-Min;Baek, In Youl
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.4
    • /
    • pp.483-491
    • /
    • 2014
  • Double cropping system including paddy field soybean is widely adopted nationwide, due to rise in market price and its higher income than paddy field rice. Sowing date of soybean as a second crop is being delayed depending on first crop's growth period and harvesting time. Due to the increased temperature in October and delayed first frost date, soybean could be harvested without frost damage even in late-plating. Therefore, selection of soybean cultivar which is appropriate for this environment is very important. The effect of sowing date and genotype of soybean on growth and yield was investigated for three planting dates (June 20, July 5, and July 20) with ten cultivars developed for soy-pate production, to figure out plant development and yield pattern in delayed planting. As planting date is delayed, plant height and pod number was decreased and this pattern was more clearly detected in mid-late maturity cultivars. Hundred-seed weight did not show significant changes even in late planting, due to compensations between yield components. Yield reduction of July 20 in contrast to that of June 20 showed that Nampung (9.6%) showed the least yield decline. Maximum yield was achieved from Daepung, Taekwang, and Uram among other soybean cultivars in late planting. Shortening of growth period was strongly detected in reproductive stage while length of vegetative stage was regularly maintained in both early and mid-late maturity cultivars.

Influences of Different Planting Times on Harvest Index and Yield Determination Factors in Soybean

  • Park, Sei-Joon;Kim, Wook-Han;Seong, Rak-Chun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.2
    • /
    • pp.97-102
    • /
    • 2000
  • This experiment was conducted to investigate the changes of harvest index and the relationship between harvest index and yield determination factors by different planting times in the determinate soybean cultivars, Shinpaldal and Danbaeg. Optimum planting were 23 May in 1995 and 1996. Late planting were 13 June in 1995 and 6 June in 1996. Growth period from planting to physiological maturity (R7) was shortened as planting time was delayed in two cultivars due to shortening of reproductive growth period in Shinpaldal, and of vegetative growth period in Danbaeg. Stem weight was distinctly decreased in late planting compared to optimum planting, but seed weight of both cultivars was not different between planting times. Also, seed number per pod and harvest index were significantly increased in late planting and the high correlation was found between two factors. It was suggested that increase of harvest index in late planting would be related with high assimilate use efficiency due to increase of sink capacity. The results of correlation and principal component analysis for yield determination factors showed that main factor on yield determination was pod number per plant at R5 stage associated with dry matter accumulation during early reproductive growth period, seed number per pod and harvest index were the second factor, and one hundred seed weight was the third factor. The result of this experiment indicated that yield determination in soy-bean was dependent mainly on pod number per plant related to dry matter accumulation by early reproductive growth period, and the increase of seed number per pod and harvest index could compensate for yield decrease by shortening of vegetative growth period in late planting. Such result suggests that optimum planting date can be delayed from mid May to early June in improved soybean cultivars in Korea.

  • PDF

Effect of Sowing Date and Planting Density on Growth, Yield and Anthocyanin Content of Purple Corn 'sakso 1'

  • Hee Yeon Kim;Jae-Keun Choi;Si-Hwan Ryu;Moon-jong Kim;Jung Heon Han;Seung Hyun Wang;Ki Sun Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.55-55
    • /
    • 2022
  • Purple com Saekso 1 was developed by Maize Research Institute (Hongcheon, Gangwon, Korea) and registered in 2011. Saekso 1 is a anthocyanin-rich hybrid variety that is yellow grain, purple husk and cob. Purple husk and cob of Saekso 1 is as a resource for the bioactive material by health food. In order to investigate optimum sowing date and planting density of Saekso 1. Agronomic characteristics were compared by sowing times April 25, May 15 and June 5. Husk dry weight were 68,72 and 70kg·10a-1, respectively. Cob dry weight were 90, 92 and 92kg·10a-1, respectively. Content of cyanidin-3-glucoside in husk were 0.56, 0.62 and 0.56% and in cob were 0.19, 0.14 and 0.17%. Therefore, the sowing time to increase husk and cob weight and content of cyanidin-3-glucoside is appropriate for planting in mid-May. The number of plants in planting density trial was 9,400, 7,000, 5,700 and 4,700 plants in 10a area. Plant height at each trial were 249, 250, 246 and 248cm, respectively. Husk dry weight were 76, 67 and 63 and 60kg·10a-1, respectively. Cob dry weight were 112, 92, 87 and 81kg·10a-1, respectively. Content of cyanidin-3-glucoside in husk were 0.70, 0.71, 0.71 and 0.75% and in cob were 0.21, 0.28, 0.26 and 0.20%. Therefore, appropriate sowing time was in mid-May and planting density was 5,700~7,000 plants·10a-1 in order to increase the yield and content of cyanidin-3-glucoside of purple com in South Korea.

  • PDF

Shifting Planting Dates and Fertilizer Application Rates as Climate Change Adaptation Strategies for Two Rice Cultivars in Cambodia

  • Wang, Qingguo;Chun, Jong Ahn;Lee, Woo-Seop;Li, Sanai;Seng, Vang
    • Journal of Climate Change Research
    • /
    • v.8 no.3
    • /
    • pp.187-199
    • /
    • 2017
  • We attempted to assess the impact of climate change on rice yields in Cambodia and to investigate adaptation strategies to climate change including more drastically shifting the planting dates and considering more fertilizer application levels. The potential yields of two wet season rice cultivars (Sen Pidao and Phka Rumduol) under two climate change scenarios in Cambodia were simulated using the CERES-Rice model. Field experiments conducted at the Cambodian Agricultural Research and Development Institute (CARDI), in 2010, 2011, and 2013 and climate variables from the HadGEM3-RA model were collected for this study. Compared with the baseline (1991-2000), yields of Sen Pidao rice will decrease under climate change and yields of Phka Rumduol rice could increase or decrease depending on fertilizer rates and the periods (2040s, 2050s, and 2080s). In general, the variations in the simulated effects of climate change on yields were more sensitive at fertilizer N100-N200 and less sensitive at fertilizer N0-N50. It is likely that forward shifts of planting date from the baseline plating date for the two cultivars in the future can be more benefitted than backward shifts. It is concluded that the CERES-Rice model can be useful to provide efficacious adaptation strategies in Cambodia.

Effect of Planting Date, Plant Spacing, and Harvest Time on the Production of Small-sized Sweetpotato in the Alpine Zone of Korea (재배조건이 소형 간식용 고구마 생산에 미치는 영향)

  • Kim, Hag-Sin;Moon, Youn-Ho;Chung, Mi-Nam;Ahn, Young-Sup;Lee, Joon-Seol;Bang, Jin-Ki
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.193-197
    • /
    • 2006
  • The optimum planting date, plant spacing, and harvest time for production of small-sized sweetpotato was evaluated in 2003 to 2004 at the Mokpo Experiment Station. Small-sized sweetpotato is important as snack food in Korea. Optimum planting date and plant spacing were with plastic mulch, and mid-April and $75{\times}15{\sim}20cm$ respectively, mid-June and $75{\times}15cm$ respectively without plastic mulch. Storage root yield decreased with early harvest, but the ratio of small-sized sweetpotato was higher in plots harvested after 100 days of planting (DAP) than that of 80 or 120 DAP. Considerable differences in storage root yield was noted with planting dates and plant spacings, but the use of plastic mulch resulted to smaller yield variations in plots, harvested in mid-April. Planting in mid-April and harvesting after 100 DAP increased income by about $32{\sim}61%$ compared with plantings mid-May.

Planting Time for the Economic Yield of a Super Sweet Corn Hybrid in the Southern Part of Korea (남부지방에서 초당옥수수의 경제적 파종한계기)

  • Yang, Seung-Kyu;Hong, Seung-Beom;Lee, Suk-Soon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.3
    • /
    • pp.325-333
    • /
    • 2007
  • To find out the planting times for the economic yield of a super sweet corn hybrid, "Cambella 90" was planted from 1 April of 2003 and 2004 at the 10 days intervals under black polyethylene (P. E.) film mulch and in bare soil in Gyeongsan. Daily maximum soil temperature under black P. E. film mulch was lower, while daily minimum soil temperature was higher compared to bare soil. Soil moisture content under black P. E. film mulch maintained optimum level longer than in bare soil. Emergence rate, percent stand, culm length, and the number of marketable ears were higher under black P E. film mulch compared to bare soil. Silking date under black P. E. film mulch was earlier compared to bare soil by $4{\sim}6$ days at April plantings, while only 1 day earlier at June plantings. Silking date of individual plants in a plot ranged $3{\sim}5$ days depending on planting dates and soil mulch in the same plot. The number of large ears decreased as planting dates delayed. Considering emergence rate and the number of marketable ears, the planting time for the economic yield of a super sweet com hybrid, "Cambella 90" ranged 1 April to 20 June in the southern part of Korea.

Flower Yield and Quality of Lilium Oriental Hybrids as Affected by Planting Date (정식시기가 오리엔탈 나리의 절화수량 및 품질에 미치는 영향)

  • Cho, Woo Sug;Park, Yoo Gyeong;Park, Ji Eun;Jeong, Byoung Ryong
    • Journal of agriculture & life science
    • /
    • v.45 no.2
    • /
    • pp.29-34
    • /
    • 2011
  • This study was carried out to investigate the flower yield and quality of Lilium Oriental Hybrids as affected by planting date. In cut flower production experiments, effect of planting date and bulb source was studied in rain shelter houses with 30% shading. Four planting dates compared were May 15, June 5, June 25, and July 15. Bulbs used for cut flower production were either imported or produced domestically. The greatest cut flower yield and quality were obtained from bulbs planted either on May 15 or June 25. Bulbs planted on July 15 produced cut flowers of very poor quality and yield, due to high temperatures during the planting time. Therefore, for planting in July, means other than 30% shading have to be adapted to lower temperature during early growth stage. Although plants from imported bulbs had better growth and cut flower yield as compared to domestic bulbs, there was no significant difference.

Effect of Spring Planting Time on Growth and Drying Root Yield of Paeonia lactiflora Pall (봄 식재시기가 작약의 생육 및 수량에 미치는 영향)

  • Kim, Jae-Cheol;Kim, Ki-Jae;Park, So-Deuk;Park, Jun-Hong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.1
    • /
    • pp.19-22
    • /
    • 2006
  • Planting of peony, a perennial herb is usually planted in fall but the planting time can be postponed to next spring for other benefit such as land use, labour diversification and etc. This study was carried out to know the effect of planting time in spring on growth and yield of peony. Sprouting date in first year growth was earlier as planting time was later. Planting on March 10 showed best both top part and root growth and planting after that time resulted in worse growth. In planting on April 10, missing plant rate was 24% and accordingly root yield decreased to 43% comparing with that of March 10. Planting on March 10 resulted in thick and large number of root and so yield per l0a was 635 kg, the highest value among the other planting time in spring. The paeoniflorin content was not different significantly by planting time. These results suggested that March 10 was most appropriate for planting time in spring.

Development of a Method to Estimate Distribution of Paddy Fields in Southeast Asia Using Terra/ASTER Data

  • Sasaki, Gaku;Takeuchi, Wataru;Yasuoka, Yoshifumi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1180-1182
    • /
    • 2003
  • In Asian countries, paddy field is indispensable for our lives not only as a source of food but also ecosystem, hydrology, landscape, culture and global warming. In this sense it is necessary to get the detailed spatial distribution of paddy field in Asian region. Remote sensing seems to be the most appropriate tool to estimate paddy field. In this study, two Terra/ASTER images acquired on different date were used to get a map of paddy field with different planting. ASTER's 15-m resolution was found to be enough to be recognize individual paddy field . Paddies with different planting stages were divided into five types using their spectral patterns. As a result a map of paddies with different planting was obtained with tolerably high accuracy.

  • PDF