• Title/Summary/Keyword: plantation forest

Search Result 368, Processing Time 0.025 seconds

Assessment of Biomass and Carbon Stock in Sal (Shorea robusta Gaertn.) Forests under Two Management Regimes in Tripura, Northeast India

  • Banik, Biplab;Deb, Dipankar;Deb, Sourabh;Datta, B.K.
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.3
    • /
    • pp.209-223
    • /
    • 2018
  • We investigated tree composition, stand characteristics, biomass allocation pattern and carbon storage variability in Sal forests (Shorea robusta Garten.) under two forest management regimes (Sal forest and Sal plantation) in Tripura, Northeast India. The results revealed higher species richness (29 species), stand density of $1060.00{\pm}11.12stems\;ha^{-1}$ and diversity index ($1.90{\pm}0.08$) in Sal forest. and lower species richness (4 species), stand density of $ 230.00{\pm}37.22stems\;ha^{-1}$ and diversity index ($0.38{\pm}0.15$) in Sal plantation. The total basal cover $33.02{\pm}4.87m^2ha^{-1}$) and dominance ($0.76{\pm}0.08$) were found higher in Sal plantation than the Sal forest ($22.53{\pm}0.38m^2ha^{-1}$ and $0.23{\pm}0.02$ respectively). The total vegetation carbon density was recorded higher in Sal plantation ($219.68{\pm}19.65Mg\;ha^{-1}$) than the Sal forest ($167.64{\pm}16.73Mg\;ha^{-1}$). The carbon density estimates acquired in this study suggest that Sal plantation in Tripura has the potentiality to store a large amount of atmospheric carbon inspite of a very low species diversity. However, Sal forests has also an impending sink of carbon due to presence of large number of young trees.

Survivability and Growth Performance of Sal (Shorea robusta C.F. Gaertn) with Compatible Associated and Naturally Grown Tropical Timber Tree Species in a Field Experiment at Madhupur Sal Forest, Bangladesh

  • Golam Mustafa Chowdhury;Laila Abeda Aktar;Habibur Rahman;Muhammad Azizul Hoque
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.3
    • /
    • pp.196-209
    • /
    • 2024
  • This study aimed to develop a mixed plantation strategy, with Sal (Shorea robusta) as the primary tree species, along with four associated and two naturally grown tree species. Using a randomized complete block design (RCBD), the field experiment involved a control group (mono plantation) and three mixed plantation groups, each replicated four times, totaling 80 replicates (40 in 2019 and 40 in 2020). Survival rate, height and collar diameter growth of seedlings were recorded in both mono and mixed plots in July 2021. Statistical analyses, including one-way ANOVA on means from three replicate plots (p<0.05) and a Tukey HSD test, were conducted to assess differences between treatments. Significant differences in survival rates were found among mono plantations, with TMono04 showing the highest survival rate (88% to 91%). However, there were no significant differences in survival rates among seedlings in mixed plantations. Notably, survival rates were lower in mono plantations compared to mixed plantations. Mono plantations showed significant differences in height growth across both 2019 and 2020 plots, with TMono05 achieving the highest height growth (101.1 cm to 123.6 cm). Similarly, mixed plantations showed significant differences in height growth, with TMixed7 displaying the most substantial growth (116.4 cm to 138.2 cm). Overall, mixed plantations showed greater height growth compared to mono plantations. Significant variations in collar diameter growth were noted in both the 2019 and 2020 mono plantation plots, with TMono01 showing the highest growth (10.2 mm to 11.1 mm). Similarly, among mixed plantations, a significant difference in collar diameter growth was observed, with TMixed4 exhibiting the highest growth (10.4 mm to 13.1 mm). Overall, mixed plantations showed higher collar diameter growth compared to mono plantations. The findings suggest that planting Sal trees alongside compatible associated and naturally grown tree species in the Sal forests is preferable over establishing mono plantations.

Mapping Species-Specific Optimal Plantation Sites Based on Environmental Variables in Namwon City, Korea (환경요인을 이용한 남원시의 적지적수도 제작)

  • Moon, Ga Hyun;Kim, Yong Suk;Lim, Joo Hoon;Shin, Man Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.126-135
    • /
    • 2015
  • This study was conducted to develop a large scale map of species-specific plantation sites based on selected environmental variables such as topography, soil, and climatic factors in Namwon city. Site index equations by tree species were first regressed to 27 environmental variables that could influence the productivity of forest sites using digital forest site maps, digital climate maps, and the 5th National Forest Inventory data. Site index equations by tree species were all evaluated to estimate site productivity using 4-5 environmental variables, and the models' reliability was confirmed based on evaluation statistics. The determination coefficients of site index equations by species ranged from 0.42 to 0.76. With the site index equations, the site conditions appropriate for productive sites by species were considered to assess spatial distribution of productive areas for each species. The final map for optimal plantation in Namwon city was produced based on both site index equations and site conditions appropriate for productive sites by each species using GIS technique. Field survey was conducted to evaluate the suitability of selected species on the map of species-specific plantation sites. Results showed that the plantation map provides relatively reasonable spatial distribution of productive areas for selected species. It was revealed, however, that the sites evaluated as 'not suitable' for any tree species should be revised and complemented with additional information, especially with the site conditions appropriate for productive sites by species of interest. The outcomes of this study are expected to provide information for making customized species-specific plantation maps.

Distribution of Organic Carbon in Pitch Pine Plantation in Kongju, Korea

  • Han, A-Reum;Mun, Hyeong-Tae
    • Journal of Ecology and Environment
    • /
    • v.32 no.1
    • /
    • pp.27-31
    • /
    • 2009
  • Organic carbon (OC) distribution in 32-year-old pitch pine plantation at Mt. Hotae in Kongju, Korea, was studied from August 2007 to July 2008. In order to investigate the OC distribution, OC in plant biomass, litterfall, litter layer on forest floor, and soil within 50cm depth were estimated. The density of P. rigida plantation was 3,200 trees/ha, average DBH was $18.7{\pm}5.53cm$ and average tree height was $11.1{\pm}1.85m$. Organic carbon stored in plant biomass, litterlayer on forest floor and soil in 2008 was 89.46 ton C/ha (46.09%), 4.32 ton C/ha (2.23%) and 100.32 ton C $ha^{-1}$ 50cm-$depth^{-1}$ (51.68%), respectively. Amount of OC returned to forest floor via litterfall was 2.21 ton C $ha^{-1}\;yr^{-1}$. Total amount of OC stored in this P. rigida plantation was 194.1 ton C/ha. Net increase of OC in above- and below-ground biomass in this pitch pine plantation was 4.82 ton C $ha^{-1}\;yr^{-1}$.

Differences of Nutrient Input by Throughfall, Stemflow and Litterfall between Deciduous Forest and Larix kaempferi Plantation in Mt. Joonwang, Kangwon-do (강원도 중왕산 지역 낙엽활엽수림과 낙엽송 조림지에서 수관통과우와 수간류 및 낙엽낙지에 의한 양분 유입의 차이)

  • Jung, Mun-Ho;Lee, Don-Koo;Um, Tae-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.2
    • /
    • pp.136-144
    • /
    • 2007
  • The objectives of this study were to compare nutrient input by throughfall, stemflow and litterfall and concentration of nutrient in soil water between deciduous forest stand and Larix kaempferi plantation at Mt. Joongwang, Pyongchang-gun, Gangwon-do. The amount of rainfall interception during study period in deciduous forest stand and L. kaempferi plantation was 12% and 36%, respectively. Concentrations of cation ($Na^+$, $Mg^{2+}$, $K^+$ and $Ca^{2+}$) in throughfall were not different, while concentration of $Cl^-$ in stemflow was higher in L. kaempferi plantation. The results indicated that annual nutrient inputs by rainfall with the exception of $Cl^-$ were significantly greater in deciduous forest stand. In soil water, concentrations of anion ($Cl^-$, $NO_3{^-}$ and $SO{_4}^{2-}$) in A-layer, and $Ca^{2+}$ and $Cl^-$ in B-layer were higher in L. kaempferi plantation. Litterfall input during study period was $2,589kg\;ha^{-1}$ in deciduous forest stand and $1,046kg\;ha^{-1}$ in L. kaempferi plantation. Concentration of N was higher in L. kaempferi plantation, while N input from litterfall was greater in the deciduous forest stand ($36.81kg\;ha^{-1}yr^{-1}$) than L. kaempferi plantation ($16.16kg\;ha^{-1}yr^{-1}$). $Na^+$, $Mg^{2+}$, $K^+$ and $Ca^{2+}$ in litterfall collected from deciduous forest stand were found to be higher than those from the L. kaempferi plantation. Also, input of those were greater in deciduous forest stand. Thus, total nutrient input by throughfall, stemflow and litterfall was greater in deciduous forest stand than L. kaempferi plantation, significantly.

Contribution of Tree Plantation, Tree Breeding and Soil Erosion Control Techniques Developed During Saemaul Undong Periods to the Successful Forest Rehabilitation in the Republic of Korea (새마을운동 기간에 조림·육종·사방 기술 연구개발이 우리나라 산림녹화 성공에 미친 기여도 고찰)

  • Lee, Don Koo;Kwon, Ki Cheol;Kang, Kyu-Suk
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.4
    • /
    • pp.371-379
    • /
    • 2017
  • This study was aimed to investigate the contribution of tree plantation, tree breeding and soil erosion control techniques developed during Saemaul Undong periods to the successful forest rehabilitation in the Republic of Korea. We surveyed a various literature of forest journals and had deep interview with forest experts who were actively involved in the forest rehabilitation projects. In the Republic of Korea, the forest rehabilitation was started with Saemaul Undong in 1970s and carried out to make the country green and to restore degraded forest lands by supports of tree plantation, tree breeding and soil erosion control techniques. Various techniques such as seed storage, seedling production, mass vegetative propagation (grafting and cutting) and special planting at denuded land or slash and burn site were developed for tree plantation. All techniques developed for the forest rehabilitation were connected with Saemaul Undong which caused active participation of local community people. Therefore, the development of tree plantation, tree breeding and soil erosion control skills had great impact on the job creation and income sources of local dwellers. It would be an applicable case to developing countries suffering with deforestation and forest degradation if the Korean skills developed for forest rehabilitation could be transferred.

Monitoring Mangrove Plantation along the Coastal Belts of Bangladesh (1989-2010)

  • Rahman, M. Mahmudur;Pramanik, Md. Abu Taleb
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.3
    • /
    • pp.225-234
    • /
    • 2015
  • Mangroves are important coastal ecosystems and are located at the inter-tidal zones of tropical and sub-tropical belts. The global mangrove forests are declining dramatically because of the conversion of forests to shrimp farming, over-exploitation, pollution and freshwater diversion. The Bangladesh Forest Department initiated mangrove afforestation throughout the coastal belts of Bangladesh in 1966 to provide better protection for the coastal communities. Up to 1990, 120,000 ha of mangroves had been planted and it is one of the largest coastal afforestaton programs in the world. The objective of this study is to exploit the spatial extent of mangrove plantation and their dynamics of changes over the last two decades using multispectral Landsat imagery. The study area covers the coastal areas of Bangladesh that is extended over the eastern part of Sundarbans up to Teknaf, the southern tip of mainland Bangladesh. Mangrove plantations were interpreted visually on computer screen and interactive delineation of forest boundary was done. The mangrove plantation area has been estimated as 32,725, 47,636 and 43,166 ha for the year of 1989, 2000 and 2010, respectively. Mangrove deforestation by human activity has increased almost six times in the recent decade in comparison to the previous one. The mangrove forest loss due to coastal erosion has slightly declined in the 2000s. Mangroves have been lost primarily because of agricultural expansion. The result of this investigation will be helpful to understand the dynamics of mangrove plantation and the main drivers of changes in this coastal ecosystem.

Comparison of stand structure and growth characteristics between Korean white pine plantation and oak-dominated natural deciduous forest by thinning treatment

  • Lee, Daesung;Choi, Jungkee
    • Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.85-98
    • /
    • 2022
  • Background: Korean white pine (Pinus koraiensis) is a major commercial species, and the importance of the oak trees (Quercus spp.) is increasing due to various factors such as environmental and ecological values. However, more information is required to clearly understand the growth characteristics of these species especially regarding thinning intensity. This study was performed to provide the basic information to develop the silvicultural guideline and field manual by analyzing tree and stand characteristics in line with thinning intensity in the Korean white pine plantation and oak-dominated natural deciduous forest. Results: Diameter at breast height (DBH) and volume changes by the thinning intensity in the Korean white pine plantation were significantly different from those in the oak-dominated deciduous natural forest. In particular, DBH distribution in the pine stand appeared that there were more large diameter trees as the thinning intensity was higher. DBH periodic annual increment (PAI) of the pine stand was higher as the thinning intensity was stronger and the growth period was shorter. This trend was similarly shown in the natural deciduous forest, but the amount of PAI was smaller than in pine stand. The volume PAI after thinning was not decreased over time. In each stand type, the PAI tended to be lower as stand density was higher. The volume PAI in the pine stand was significantly higher than that in the oak-dominated natural deciduous forest. Dead trees occurred the most in the unthinned plots of each stand type, and those were higher in the natural deciduous forest. Ingrowth trees were observed only in the natural deciduous forest, and its distribution was the lowest in unthinned plots; Korean white pine as ingrowth occurred the most frequently among many tree species. Conclusions: Different effects of thinning treatment on DBH and volume PAI, mortality, and ingrowth were observed for each stand. With respect to forest growth, Korean white pine plantation was superior to the oak-dominated natural deciduous forest. The results of this study offer fundamental information for the development of silvicultural guidelines for Korean white pine plantations and oak-dominated natural deciduous forests in Korea.

Carbon Sequestration of Teak (Tectona grandis Linn. f.) Plantations in the Bago Yoma Region of Myanmar

  • Oo, Thaung Naing;Lee, Don Koo;Combalicer, Marilyn
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.602-608
    • /
    • 2007
  • Forest plantations become important strategy not merely for the financial aspect, but for carbon sequestration and ecosystem stability. Forest plantations increase the density of the forest biomass, which reduce the increase in atmospheric carbon dioxide. Biomass density is also a useful variable for comparing structural and functional attributes of forest ecosystems across a wide range of environmental conditions. In this study, carbon sequestration of teak (Tectona grandis Linn. f.) in the individual tree and plantation levels estimation was carried out Site-specific allometric equation for the estimation of teak tree biomass was developed based on the direct measurement of fifteen (15) harvested trees in the Oak-twin Township of the Bago Yoma Region, Myanmar. A regression equation of the diameter at breast height (DBH) and the aboveground biomass (carbon content) was constructed to estimate the carbon storage level of plantations, which averaged 79 ton/ha. The average carbon accumulation in the soil (up to 30 cm in depth) was estimated 38.89 ton/ha, The highest mean annual increment (MAI) of total carbon was found in the 6-yr-old teak plantation (12.10 ton/ha/yr) whereas the lowest MAI was in the 26-yr-old teak plantation (4.31 ton/ha/yr).

Estimation of Carbon Stock in the Chir Pine (Pinus roxburghii Sarg.) Plantation Forest of Kathmandu Valley, Central Nepal

  • Sharma, Krishna Prasad;Bhatta, Suresh Prashad;Khatri, Ganga Bahadur;Pajiyar, Avinash;Joshi, Daya Krishna
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.1
    • /
    • pp.37-46
    • /
    • 2020
  • Vegetation carbon sequestration and regeneration are the two major parameters of forest research. In this study, we analyzed the vegetation carbon stock and regeneration of community-managed pine plantation of Kathmandu, central Nepal. Vegetation data were collected from 40 circular plots of 10 m radius (for the tree) and 1m radius (for seedling) applying a stratified random sampling and nested quadrat method. The carbon stock was estimated by Chave allometric model and estimated carbon stock was converted into CO2 equivalents. Density-diameter (d-d) curve was also prepared to check the regeneration status and stability of the plantation. A d-d curve indicates the good regeneration status of the forest with a stable population in each size class. Diversity of trees was very low, only two tree species Pinus roxburghii and Eucalyptus citriodora occurred in the sample plots. Pine was the dominant tree in terms of density, basal area, biomass, carbon stock and CO2 stock than the eucalyptus. The basal area, carbon stock and CO2 stock of forest was 33±1.0 ㎡ ha-1, 108±5.0 Mg ha-1 and 394±18 Mg ha-1, respectively. Seedling and tree density of the plantation was 4,965 ha-1 and 339 ha-1 respectively. The forest carbon stock showed a positive relationship with biomass, tree diameter, height and basal area but no relationship with tree density. Canopy cover and tree diameter have a negative effect on seedling density and regeneration. In conclusion, the community forest has a stable population in each size class, sequestering a significant amount of carbon and CO2 emitted from densely populated Kathmandu metro city as the forest biomass hence have a potentiality to mitigate the global climate change.