• Title/Summary/Keyword: plantarflexion

Search Result 103, Processing Time 0.021 seconds

Differences in Ankle Muscle Activity During Static Balance According to Age and Ankle Proprioception

  • Kim, Seo-hyun;Yi, Chung-hwi;Han, Gyu-hyun;Kim, Su-bin
    • Physical Therapy Korea
    • /
    • v.29 no.3
    • /
    • pp.194-199
    • /
    • 2022
  • Background: Older adults use different ankle muscle activation patterns during difficult static balance conditions. It has been suggested that this is related to a decline in proprioception with age, resulting in reduced postural balance. However, the association between proprioception and ankle muscle activity during quiet standing has not been directly assessed. Objects: This study aimed to investigate the effects of age and sensory condition on ankle muscle activity and the association between ankle proprioception and ankle muscle activity. Methods: We recruited 10 young women and 9 older women. Ankle proprioception was evaluated using joint position sense (JPS) and force sense (FS) divided by dorsiflexion and plantarflexion. The electromyographic activity of the tibialis anterior (TA) and gastrocnemius (GCM) muscles was collected during quiet standing. Results: Older women activated GCM muscle more than young during quiet standing and when performing difficult tasks. Older women had more errors in JPS dorsiflexion and FS plantarflexion than did young. The GCM muscle activity is related to JPS dorsiflexion and FS plantarflexion. Conclusion: Lower proprioception of the GCM with age leads to increased muscle activity, resulting in reduced postural balance. There was no difference in TA proprioception or muscle activity among older women with frequent physical activity.

Ankle Flexion Information in Healthcare (헬스케어에서 발목의 굴곡 정보)

  • Shin, Seong-Yoon;Lee, Min-Hye;Shin, Kwang-Seong;Lee, Hyun-Chang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.678-679
    • /
    • 2022
  • In this paper, information on ankle instability will be acquired and processed by selecting the area of flexion of the ankle among a diverse range of areas of the Healthcare System. In addition, re-damaging of patient's ankle will be prevented on the basis of such information. Moreover, the system of automatically measuring and managing the angles of dorsiflexion and plantarflexion of the ankle by using video will be presented in this System.

  • PDF

The Effects of Corrective Hip Joint Exercises and Foot Orthotics on RCSP, Ankle's Range of Motion, and Core Muscle Strength for Middle School Students with Pes Planus (편평족 중학생의 고관절 교정 운동 프로그램과 발교정구 착용 유무가 안정시 종골 기립 각도, 발목의 가동범위, 코어 근력에 미치는 영향)

  • Kim, Nam-Hee;Yi, Kyung-Ock
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.4
    • /
    • pp.401-412
    • /
    • 2015
  • Objective : The purpose of this study is to evaluate the effects of hip joint exercises and orthotics on RCSP, ankle's range of motion, and core muscle strength of middle school students with pes planus. Method : Out of the original pool of 200 students, 60 students with pes planus (RCSP < -2) were selected for the study. The selected 60 students were then divided into four groups. The first group was a combined orthotics and exercise group (12 students), the second was the orthotics-only group (9 students), the third was the exercise-only group (8 students), and the last was the control group (10 students). Exercise groups worked out twice a week for 60 minutes per session over 8 weeks. The independent variables were corrective hip joint exercises and orthotics. The dependant variables consisted of kinematic and kinetic variables. The kinematic variables were RCSP, and ankle's range of motion (dorsiflexion and plantarflexion). The kinetic variables were muscles forces that consist in core muscle strength, which are hip joint adduction, abduction, and flexion muscles forces. Statistical analysis was performed via SPSS 18.0 with multivariate analysis of covariance (MANCOVA) and a paired t-test was used. Results : The left foot was more responsive to the treatments, both exercise and orthotics, than the right foot. RCSP improved significantly in the left foot for the first and third groups. Only the first group significantly improved hip joint adduction, abduction, and flexion muscles' strengths. As for the ankle's range of motion of the left foot, plantarflexion showed improvement when treated with exercise, orthotics, or both. Conclusion : This study found that exercise is more effective in correcting RCSP and foot orthotics is more effective in reinforcing core muscle strength. Future studies should expand on these results to examine the relationship between the ankle, hip, and pelvis.

The effect of ankle Kinesio taping on range of motion and agility during exercise in university students

  • Eom, Se Young;Lee, Won Jun;Lee, Jae Il;Lee, Eun Hee;Lee, Hye Young;Chung, Eun Jung
    • Physical Therapy Rehabilitation Science
    • /
    • v.3 no.1
    • /
    • pp.63-68
    • /
    • 2014
  • Objective: The purpose of this study was to examine the effects of ankle Kinesio taping on range of motion and agility during exercise in university students. Design: Cross-sectional study. Methods: Thirty subjects were randomly allocated to two groups: taping group (n=15) and non-taping group (n=15). All groups underwent the same exercise program including stretching for 30 minutes. The exercise program proceeded in the following order: five minutes of stretching, a 20-minutes exercise program, and additional five minutes of stretching. Of the eight exercise methods suggested by Purcell et al, seven were chosen (lateral shuffle, forward and backward running, agility ladder, figure-of-8, forward jogging while jumping over cones, wall jumps and zigzags); $90^{\circ}$ cuts with lateral shuffle were omitted. The range of motion of ankle dorsiflexion and plantarflexion was measured using the goniometer. Agility was measured using the side hop test. Results: For ankle range of motion, the taping group showed significant differences in dorsiflexion and plantarflexion on both sides (p<0.05). The non-taping group showed significant differences only in left plantarflexion (p<0.05). There was a significant difference in dorsiflexion on both sides between the taping group and the non-taping group (p<0.05). All groups showed significant differences in agility on the left and right ankle (p<0.05). There was a significant difference in left ankles between the taping group and the non-taping group (p<0.05). Conclusions: Kinesio taping increased range of motion and agility during exercise in university students. Additional research on Kinesio taping for improving range of motion and agility is needed.

Gait Analysis on Unexpected Missing Foot Steps (헛디딤 보행특성 분석)

  • Hwang, Sun-Hong;Ryu, Ki-Hong;Keum, Young-Kwang;Kim, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.1 s.190
    • /
    • pp.85-92
    • /
    • 2007
  • In the present study, three-dimensional motion analyses were performed to determine biomechanics of the lower extremity in unexpected missing foot steps for ten healthy young volunteers. In unexpected missing foot steps, the whole plantar surface of the foot or the heel contacted to the ground. A rapid ankle dorsiflexion was found right after missing foot steps and an increased plantarflexion moment was noted during loading response. After the unexpected situation, the breaking force increased rapidly. At this time, both tibialis anterior and soleus were simultaneously activated. Moreover, the range of motion at ankle, knee and hip significantly decreased during stance. In pre-swing, rectus femoris and biceps femoris prevented the collapse of the lower limbs. During late stance, propulsive forces decreased and thus, both plantarflexion moment and power generation were significantly reduced. On the opposite side, hip extension and pelvic upward motion during terminal swing were significant. Due to the shortened pre-swing, the energy generation at the ankle to push sufficiently off the ground was greatly reduced. This preliminary study would be helpful to understand the biomechanics of unexpected dynamic perturbations and valuable to prevent frequent falling of the elderly and patients with gait disorders.

Effect of Weight Shift Exercises on Leg Global Synkinesis and Gait in Patients with Stroke (체중이동 운동이 뇌졸중 환자의 다리 Global Synkinesis와 보행에 미치는 영향)

  • Baek, Seung-Yun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.2
    • /
    • pp.63-70
    • /
    • 2021
  • PURPOSE: This study aimed to analyze the factors influencing the improvement of global synkinesis (GS) and gait in stroke patients by the weight shift exercise. METHODS: Twenty stroke patients were randomly assigned to experimental group I (n = 10) and experimental group II (n = 10). In experimental group I, weight shift with upper extremity exercises in a standing position were mediated and in experimental group II, upper extremity exercises in a standing position were mediated. These interventions were conducted in both groups for three sessions per week, 30 minutes per session over four weeks. Before the interventions, leg GS was measured using surface electromyography and the 10m walk test (10MWT). The same parameters were measured four weeks later. RESULTS: The GS and 10MWT of the experimental group I showed that there was a statistically significant difference between dorsiflexion (p < .05) and plantarflexion (p < .01) and 10MWT (p < .01). In experimental group II, there was a statistically significant difference only in 10MWT (p < .01). The comparison between the changes in both groups showed that in the case of GS, there was a statistically significant difference in the dorsiflexion (p < .01) and plantarflexion (p < .05), and in the 10MWT too (p < .05). CONCLUSION: GS of the lower extremities was decreased by improving posture control and enlarging soft tissues due to the symmetrical weight shift in experimental group I, which turned out to be effective in improving the gait speed.

Comparison of the Changes in the Activation of the Quadriceps Muscle based on the Plantar Flexion Degree of the Ankle Joint in Healthy Young Females during the Stand-to-Sit movement

  • Sung-Min Son
    • The Journal of Korean Physical Therapy
    • /
    • v.35 no.2
    • /
    • pp.53-57
    • /
    • 2023
  • Purpose: The purpose of this study was to compare the changes in the muscle activation of the quadriceps muscle (rectus femoris, vastus lateralis, vastus medialis) during the stand-to-sit (StandTS) movement according to the plantar flexion angle of the ankle joint. Methods: A total of 22 healthy young females participated in this study. During the StandTS under the three conditions (plantarflexion angle 0°, 20°, and 45° of the ankle), electromyography (EMG) data (% maximum voluntary iso¬metric contraction) of the rectus femoris, vastus lateralis, and vastus medialis were recorded using a wireless surface EMG system. Results: There was a significant difference in the muscle activation of rectus femoris, vastus lateralis, and vastus medialis according to the plantar flexion angle (0°, 20°, and 45°) of the ankle. The muscle activation of the quadriceps was the highest at a 45° angle of plantarflexion and the lowest at 0°. One-way repeated ANOVA was used to analyze the muscle activation data of the lower extremity muscles according to the angle of the ankle joint. Conclusion: Based on the results of our study, it was confirmed that the muscle activity of the quadriceps can be increased even in the StandTS movement, which involves the eccentric contraction of the quadriceps muscle. This suggests that maintaining a plantar flexion posture for a long time, say by wearing high-heeled shoes, can quickly cause muscle fatigue in the lower-limb muscles, which can cause a decrease in balance ability leading to falls.

Measurement of Muscle Strength of Ankle Joint Using Isokinetic Dynamometer in Normal Korean Adults (등속성 운동검사를 이용한 정상 한국인 성인에서의 발목관절 근력 측정)

  • Choi, Seung-Myung;Park, Ji-Kang;Ha, Yoon-Won;Cho, Byung-Ki
    • Journal of Korean Foot and Ankle Society
    • /
    • v.19 no.4
    • /
    • pp.142-150
    • /
    • 2015
  • Purpose: Restoration of ankle stability through the strengthening exercise of peroneus muscles is considered an important factor for achievement of successful outcomes, in the rehabilitation program following ankle ligament injuries. However, there were few definitive data on normal muscle strength, including eversion power by peroneus muscles. This study was conducted to evaluate the muscle strength of ankle joint measured using an isokinetic dynamometer in normal Koreans. Materials and Methods: Sixty adults (120 ankles) were recruited and divided into three groups (20 in their twenties, 20 in thirties, and 20 in forties). Each group consisted of 10 males and 10 females. The selection criteria were no history of ankle injury and no evidence of instability. The peak torque, total work, and deficit ratio were measured using the Biodex$^{TM}$ (Biodex Medical Systems). Differences in muscle strength by age, gender and dominant versus non-dominant side were analyzed. Results: The peak torque of dorsiflexion was average 31.5 Nm at $30^{\circ}/s$ of angular velocity and 18.8 Nm at $90^{\circ}/s$; average 69.3 Nm ($30^{\circ}/s$) and 42.4 Nm ($90^{\circ}/s$) on plantarflexion; average 19.6 Nm ($30^{\circ}/s$) and 10.8 Nm ($90^{\circ}/s$) on inversion; average 12.9 Nm ($30^{\circ}/s$) and 8.0 Nm ($90^{\circ}/s$) on eversion. The deficit ratio of strength in women was average 61.1% of men on dorsiflexion; average 66.2% on plantarflexion; average 48.5% on inversion; average 55.4% on eversion. The deficit ratio in non-dominant foot was average 88.6% of dominant foot on dorsiflexion; average 90.1% on plantarflexion; average 85.1% on inversion; average 85.6% on eversion. Conclusion: The muscle strength of the ankle joint showed a tendency to weaken with age. There were significant differences in muscle strength by gender and dominancy. Further studies for comparison of patients with ankle instability, a comparison between before and after surgery for instability, the correlation between clinical outcomes and the recovery in muscle strength will be needed.

The Effect of Muscle Activity on Muscle Architectural of Medial Gastrocnemius in Chronic Stroke Patient Based on Ankle Joint Degree (만성 뇌졸중 환자에서 발목관절 각도에 따른 근 수축이 내측 비복근의 근 구조에 미치는 영향)

  • Kim, Tae-Gon;Bae, Sea-Hyun;Kim, Kyung-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.3991-3998
    • /
    • 2012
  • The aim of this study was to effect of muscle activity on muscle architectural of medial gastrocnemius in chronic stroke patient based on ankle joint degree. The subjects of this study were 10 chronic stroke patients modified Ashworth scale(MAS) 2. Ultrasonographic and dynamometer was measured during resting and maximum voluntary isometric contraction(MVIC) on muscle thickness, pennation angle, fascicle length, MVIC. Result from analysis showed that muscle thickness was thinner in the paretic side than in the non-paretic side(p<.001) and the more plantarflexion increased, the thinner muscle thickness became. And at the time of resting rather than of MVIC significant(p<.001). Result from analysis showed that penneation angle was smaller in the paretic side than in the non-paretic side(p<.001) and the more plantarflexion increased, the larger pennation became. And at the time of resting rather than of MVIC significant(p<.001). Result from analysis showed that fascicle was shorter in the paretic side than in the non-paretic side(p<.001) and the more plantarflexion increased, the shorter fascicle length became. And at the time of resting rather than of MVIC significant(p<.001). The results of this study showed that effect of muscle activity on muscle architectural of medial gastrocnemius in chronic stroke patient based on ankle joint degree. Therefore, Ultrasonographic evaluation of chronic stroke patients according ankle joint degree and muscle activity in the clinical diagnosis and therapy is considered a very useful data.

The Effect of Foot Landing Type on Lower-extremity Kinematics, Kinetics, and Energy Absorption during Single-leg Landing

  • Jeong, Jiyoung;Shin, Choongsoo S.
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.3
    • /
    • pp.189-195
    • /
    • 2017
  • Objective: The aim of this study was to examine the effect of foot landing type (forefoot vs. rearfoot landing) on kinematics, kinetics, and energy absorption of hip, knee, and ankle joints. Method: Twenty-five healthy men performed single-leg landings with two different foot landing types: forefoot and rearfoot landing. A motion-capture system equipped with eight infrared cameras and a synchronized force plate embedded in the floor was used. Three-dimensional kinematic and kinetic parameters were compared using paired two-tailed Student's t-tests at a significance level of .05. Results: On initial contact, a greater knee flexion angle was shown during rearfoot landing (p < .001), but the lower knee flexion angle was found at peak vertical ground reaction force (GRF) (p < .001). On initial contact, ankles showed plantarflexion, inversion, and external rotation during forefoot landing, while dorsiflexion, eversion, and internal rotation were shown during rearfoot landing (p < .001, all). At peak vertical GRF, the knee extension moment and ankle plantarflexion moment were lower in rearfoot landing than in forefoot landing (p = .003 and p < .001, respectively). From initial contact to peak vertical GRF, the negative work of the hip, knee, and ankle joint was significantly reduced during rearfoot landing (p < .001, all). The contribution to the total work of the ankle joint was the greatest during forefoot landing, whereas the contribution to the total work of the hip joint was the greatest during rearfoot landing. Conclusion: These results suggest that the energy absorption strategy was changed during rearfoot landing compared with forefoot landing according to lower-extremity joint kinematics and kinetics.