• Title/Summary/Keyword: plant-based diets

Search Result 50, Processing Time 0.021 seconds

Influences of Supplemental Plant Phytase (Phytazyme®) on Performances and Phosphorus Excretion in Laying Hens (사료내 식물성 Phytase (Phytazyme®) 첨가가 산란계의 생산성 및 인 이용성에 미치는 영향)

  • Kwon, S.K.;Kim, S.K.;An, B.K.;Yang, U.M.;Nam, K.T.;Kang, C.W.;Kang, S.J.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.55-60
    • /
    • 2002
  • Two experiments were conducted to investigate the effect of dietary supplementation of plant phytase (Phytazyme$^{(R)}$) in corn-soybean meal based diets on utilization of phytase-bound phosphorus in laying hens and evaluate nitrogen(N) digestibility and phosphorus(P) availability in breeders. In the experiment one, three levels of the Phytazyme$^{(R)}$(0.05, 0.1, and 0.2% of diet) were added to diets containing a half of control TCP level(0.96%) for 4 wks. Feed consumption, egg production rate, egg weight and eggshell quality were recorded weekly. At the end of experiment, 8 birds per treatment were sacrificed, liver weight were weighed and right tibiae were removed for determination of P content. The second experiment was conducted to evaluate the P availability and nitrogen digestibility in breeders fed same diets for 2 wks. Feed and excreta were collected to determine the P and N contents for the last three days of experiment two. Addition of Phytazyme$^{(R)}$ resulted in no effects on feed intake, egg product rate, egg weight and egg shell quality. P excretion decreased and its availability enhanced as phytase supplementation increased in diets. Dietary supplementation of Phytazyme$^{(R)}$ above 0.1% level in corn-soybean meal based diets did not have an adverse effect on production and decreased level of phosphorus in excreta.

Effects of three different dietary plant protein sources as fishmeal replacers in juvenile whiteleg shrimp, Litopenaeus vannamei

  • Bae, Jinho;Hamidoghli, Ali;Djaballah, Marouane Sad;Maamri, Salha;Hamdi, Ayoub;Souffi, Ismai;Farris, Nathaniel Wesley;Bai, Sungchul C.
    • Fisheries and Aquatic Sciences
    • /
    • v.23 no.1
    • /
    • pp.2.1-2.6
    • /
    • 2020
  • Background: As the cost of fishmeal continues to rise, there will be a need to optimize the diet by minimizing dietary fishmeal inclusion in aquafeed. In this study, a 7-week experiment was conducted to evaluate soybean meal, fermented soybean meal (soytide), and sesame meal as fishmeal replacers in whiteleg shrimp, Litopenaeus vannamei. Methods: A 30%-based fishmeal diet was considered as control (CON), six other diets were prepared by replacing 20% or 40% of fishmeal with soybean meal (SB20 and SB40), fermented soybean meal (ST20 and ST40), or sesame meal (SM20 and SM40) from the CON diet. Twenty shrimp with average initial weight of 0.65 ± 0.05 g (mean ± SD) were randomly distributed into 21 tanks (45 L) and fed four times a day. Water temperature was controlled at 28 ± 1 ℃ and aeration was provided by air stones. Results: Weight gain, specific growth rate, feed efficiency, and protein efficiency ratio of shrimp fed CON showed no significant differences compared to shrimp fed all the other diets. However, growth performance of shrimp fed ST20 diet was significantly higher than those of shrimp fed the SM20 and SM40 diets (P < 0.05). Superoxide dismutase activity (SOD) of shrimp fed CON, ST20, and ST40 diets was significantly higher than those of shrimp fed the SB40 and SM40 diets. But there were no significant differences among shrimp fed CON, SB20, ST20, ST40, and SM20 diets. Also, lysozyme activity of shrimp fed ST20 diet was significantly higher than those of shrimp fed the SB40 and SM40 diets. Although, lysozyme activity of shrimp fed the CON diet was not significantly different compared to shrimp fed all the other experimental diets. Conclusions: Therefore, SB, ST, and SM could replace 40% of fishmeal based on growth performance and lysozyme. According to the SOD activity, SB and SM could replace 20% of fishmeal and ST could replace 40% of fishmeal in juvenile whiteleg shrimp Litopenaeus vannamei.

Intraspecific diet shifts of the sesarmid crab, Sesarma dehaani, in three wetlands in the Han River estuary, South Korea

  • Yang, Dongwoo;Han, Donguk;Park, Sangkyu
    • Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.31-42
    • /
    • 2019
  • Background: Han River estuary is a national wetland reserve near the Demilitarized Zone (DMZ) between South Korea and North Korea. This trans-boundary estuary area has been well preserved and shows distinctive plant communities along the salinity gradient. To elucidate energy flows and nutrient cycling in this area, we studied trophic relations between the dominant sesarmid crab, Sesarma dehaani, and food sources in three wetlands with different environments along the estuarine gradients. Results: Stable isotope signatures (${\delta}^{13}C$ and ${\delta}^{15}N$) of the crabs were significantly different among the sites and body size classes. Seasonal changes in ${\delta}^{13}C$ of small crabs were distinct from those of large individuals at all the sites. The isotopic values and fatty acid profiles of the crabs were more different among the sites in September than in May. In May, large-sized crabs utilized more plant materials compared to other dietary sources in contrast to small-sized crabs as revealed by a stable isotope mixing modeling, whereas contributions to diets of crabs were not dominated by a specific diet for different body size in September except at site 1. Based on PCA loadings, fatty acid content of $18:3{\omega}3$, known as a biomarker of plant materials, was the main factor to separate size groups of crabs in May and September. The ${\delta}^{13}C$ value of sediment had high correlation with those of small-sized crabs at site 1 and 2 when 1-month time lag was applied to the value for crabs during the surveyed period. Conclusions: Based on the stable isotope and fatty acid results, the consumption habits of S. dehaani appear to be distinguished by sites and their size. In particular, smaller size of S. dehaani appears to be more dependent on fewer food sources and is influenced more by the diet sources from the sediments in Han River estuary.

Vegetarian Diets and Estrogen Metabolism in Korean Premenopausal Women

  • Kim Kyung Mi;Sung Mi Kyung
    • Journal of Community Nutrition
    • /
    • v.7 no.1
    • /
    • pp.29-35
    • /
    • 2005
  • It has been suggested that dietary fat increases the risk of breast cancer by elevating serum estrogen concentrations. However, studies on a relationship between fat intake and breast cancer risk have shown contradictory results, possibly because the levels of fat intake in study populations were too high to observe differences. Also, the effect of other dietary factors may present. The present study was performed to investigate the relationship between diet and estrogen metabolism in premenopausal women whose usual fat intake is relatively low compared to their western counterparts. Twenty lacto-ovo vegetarians (LOV) and twenty omnivores participated in the study. Three day food records including a Saturday or a Sunday were used to estimate nutrient intake. Serum lipids, estradiol, sex-hormone binding globulin, and urinary estradiol were measured. Study results showed $24.8\%$ and $20.9\%$ of energy intake were provided from fat in omnivorous and LOV subjects, respectively. Serum and urinary levels of estradiol were two times higher in omnivores. Fat intake was not related to either serum estradiol nor urinary estradiol when the Spearman correlation coefficient analysis was performed. Carbohydrate, total dietary fiber and soluble dietary fiber intakes were negatively related to serum estradiol concentration. Legumes, vegetables and fruit consumption showed significantly negative relationships with both serum and urinary estradiol concentrations. These results indicate lower estrogen availability may be associated with plant food­based diets in premenopausal women whose usual diets contain less than $25\%$ of energy as fat.

Effects of Replacement of Soybean Meal by Fermented Cottonseed Meal on Growth Performance, Serum Biochemical Parameters and Immune Function of Yellow-feathered Broilers

  • Tang, J.W.;Sun, H.;Yao, X.H.;Wu, Y.F.;Wang, X.;Feng, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.3
    • /
    • pp.393-400
    • /
    • 2012
  • The study was conducted to examine the effects of partially replacing soybean meal (SBM) by solid-state fermented cottonseed meal (FCSM) on growth performance, serum biochemical parameters and immune function of broilers. After inoculated with Bacillus subtilis BJ-1 for 48 h, the content of free gossypol in cottonseed meal was decreased from 0.82 to 0.21 g/kg. A total of 600, day-old male yellow-feathered broilers were randomly divided into four groups with three replicates of 50 chicks each. A corn-SBM based control diet was formulated and the experimental diets included 4, 8 or 12% FCSM, replacing SBM. Throughout the experiment, broilers fed 8% FCSM had higher (p<0.05) body weight gain than those fed 0, 4 and 12% FCSM. The feed intake in 8% FCSM group was superior (p<0.05) to other treatments from d 21 to 42. On d 21, the concentration of serum immunoglobin M in the 4% and 8% FCSM groups, as well as the content of complements (C3, C4) in 8% FCSM group were greater (p<0.05) than those in the SBM group. Besides, birds fed 8% FCSM had increased (p<0.05) serum immunoglobin M, immunoglobulin G and complement C4 levels on d 42 compared with bird fed control diet. No differences (p>0.05) were found between treatments regarding the serum biochemical parameters and the relative weights of immune organs. In conclusion, FCSM can be used in broiler diets at up to 12% of the total diet and an appropriate replacement of SBM with FCSM may improve growth performance and immunity in broilers.

The impact of substituting soybean meal with various plant byproducts on the growth performance, nutrient digestibility, and fecal scores of growing pigs

  • Weihan Zhao;In Ho Kim
    • Korean Journal of Agricultural Science
    • /
    • v.51 no.2
    • /
    • pp.179-186
    • /
    • 2024
  • Soybean meal (SBM) is a high-protein plant product commonly used as the primary protein source in pig diets. However, its price has been steadily rising, prompting us to search for cost-effective, high-yield protein sources. This experiment aimed to assess the effects of partial replacing SBM with 6% of palm kernel meal (PKM), lupin kernel (LK), rapeseed meal (RSM), and distillers dried grains solubles (DDGS) on the growth performance, nutrient digestibility, and fecal scoring in growing pigs. A total of 200 (Yorkshire × Duroc) growing pigs with an initial weight of 34.83 ± 1.38 kilograms were utilized in this research for 29 days. All pigs were randomly assigned to one of five dietary treatments based on their gender and initial body weight, Each treatment consisted of 10 replicates with 2 barrows and 2 gilts per pen. The dietary treatments were as follows: control (CON), a corn-SBM-based diet; and basal diet supplemented with 6% of different plant byproducts (PKM, LK, RSM, and DDGS) Adding 6% of RSM to the basal diet showed slightly higher daily gain (2.520 > 2.513) and there was no difference observed on the nutrient digestibilty and fecal score. Replacing soybean meal with different plant byproducts has no adverse effect on growth performance, nutrient digestibility, and fecal score.

Effect of Bacillus amyloliquefaciens-based Direct-fed Microbial on Performance, Nutrient Utilization, Intestinal Morphology and Cecal Microflora in Broiler Chickens

  • Lei, Xinjian;Piao, Xiangshu;Ru, Yingjun;Zhang, Hongyu;Peron, Alexandre;Zhang, Huifang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.239-246
    • /
    • 2015
  • The present study was conducted to evaluate the effect of the dietary supplementation of Bacillus amyloliquefaciens-based direct-fed microbial (DFM) on growth performance, nutrient utilization, intestinal morphology and cecal microflora in broiler chickens. A total of two hundred and eighty eight 1-d-old Arbor Acres male broilers were randomly allocated to one of four experimental treatments in a completely randomized design. Each treatment was fed to eight replicate cages, with nine birds per cage. Dietary treatments were composed of an antibiotic-free basal diet (control), and the basal diet supplemented with either 15 mg/kg of virginiamycin as antibiotic growth promoter (AGP), 30 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 30) or 60 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 60). Experimental diets were fed in two phases: starter (d 1 to 21) and finisher (d 22 to 42). Growth performance, nutrient utilization, morphological parameters of the small intestine and cecal microbial populations were measured at the end of the starter (d 21) and finisher (d 42) phases. During the starter phase, DFM and virginiamycin supplementation improved the feed conversion ratio (FCR; p<0.01) compared with the control group. For the finisher phase and the overall experiment (d 1 to 42) broilers fed diets with the DFM had better body weight gain (BWG) and FCR than that of control (p<0.05). Supplementation of virginiamycin and DFM significantly increased the total tract apparent digestibility of crude protein (CP), dry matter (DM) and gross energy during both starter and finisher phases (p<0.05) compared with the control group. On d 21, villus height, crypt depth and villus height to crypt depth ratio of duodenum, jejunum, and ileum were significantly increased for the birds fed with the DFM diets as compared with the control group (p<0.05). The DFM 30, DFM 60, and AGP groups decreased the Escherichia coli population in cecum at d 21 and d 42 compared with control group (p<0.01). In addition, the population of Lactobacillus was increased in DFM 30 and DFM 60 groups as compared with control and AGP groups (p<0.01). It can be concluded that Bacillus amyloliquefaciens-based DFM could be an alternative to the use of AGPs in broilers diets based on plant protein.

Effect of Dietary Phytase Transgenic Corn on Physiological Characteristics and the Fate of Recombinant Plant DNA in Laying Hens

  • Gao, Chunqi;Ma, Qiugang;Zhao, Lihong;Zhang, Jianyun;Ji, Cheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.77-82
    • /
    • 2014
  • The study aimed to evaluate the potential effects of feeding with phytase transgenic corn (PTC) on organ weight, serum biochemical parameters and nutrient digestibility, and to determine the fate of the transgenic DNA in laying hens. A total of 144 50-week-old laying hens were grouped randomly into 2 treatments, with 8 replicates per treatment and 9 hens per replicate. Each treatment group of hens was fed with diets containing 62.4% non-transgenic conventional corn (CC) or PTC for 16 weeks. The phytase activity for CC was 37 FTU/kg of DM, whereas the phytase activity for PTC was 8,980 FTU/kg of DM. We observed that feeding PTC to laying hens had no adverse effect on organ weight or serum biochemical parameters (p>0.05). A fragment of a poultry-specific ovalbumin gene (ov) was amplified from all tissues of hens showing that the DNA preparations were amenable to PCR amplification. Neither the corn-specific invertase gene (ivr) nor the transgenic phyA2 gene was detected in the breast muscle, leg muscle, ovary, oviduct and eggs. The digestibility data revealed no significant differences between the hens that received the CC- and PTC-based diets in the digestibility of DM, energy, nitrogen and calcium (p>0.05). Phosphorus digestibility of hens fed the PTC-based diet was greater than that of hens fed the CC-based diet (58.03% vs 47.42%, p<0.01). Based on these results, it was concluded that the PTC had no deleterious effects on the organ weight or serum biochemical parameters of the laying hens. No recombinant phyA2 gene was detected in muscle tissues and reproductive organs of laying hens. The novel plant phytase was efficacious in improving the phosphorus digestibility of laying hens.

Interactions Between Genetic Risk Score and Healthy Plant Diet Index on Cardiometabolic Risk Factors Among Obese and Overweight Women

  • Fatemeh Gholami;Mahsa Samadi;Niloufar Rasaei;Mir Saeid Yekaninejad;Seyed Ali Keshavarz;Gholamali Javdan;Farideh Shiraseb;Niki Bahrampour;Khadijeh Mirzaei
    • Clinical Nutrition Research
    • /
    • v.12 no.3
    • /
    • pp.199-217
    • /
    • 2023
  • People with higher genetic predisposition to obesity are more susceptible to cardiovascular diseases (CVDs) and healthy plant-based foods may be associated with reduced risks of obesity and other metabolic markers. We investigated whether healthy plant-foods-rich dietary patterns might have inverse associations with cardiometabolic risk factors in participants at genetically elevated risk of obesity. For this cross-sectional study, 377 obese and overweight women were chosen from health centers in Tehran, Iran. We calculated a healthy plant-based diet index (h-PDI) in which healthy plant foods received positive scores, and unhealthy plant and animal foods received reversed scores. A genetic risk score (GRS) was developed based on 3 polymorphisms. The interaction between GRS and h-PDI on cardiometabolic traits was analyzed using a generalized linear model (GLM). We found significant interactions between GRS and h-PDI on body mass index (BMI) (p = 0.02), body fat mass (p = 0.04), and waist circumference (p = 0.056). There were significant gene-diet interactions for healthful plant-derived diets and BMI-GRS on high-sensitivity C-reactive protein (p = 0.03), aspartate aminotransferase (p = 0.04), alanine transaminase (p = 0.05), insulin (p = 0.04), and plasminogen activator inhibitor 1 (p = 0.002). Adherence to h-PDI was more strongly related to decreased levels of the aforementioned markers among participants in the second or top tertile of GRS than those with low GRS. These results highlight that following a plant-based dietary pattern considering genetics appears to be a protective factor against the risks of cardiometabolic abnormalities.

Evaluation of shrimp protein hydrolysate and krill meal supplementation in low fish meal diet for red seabream (Pagrus major)

  • Gunathilaka, Buddhi E.;Khosravi, Sanaz;Shin, Jaebeom;Shin, Jaehyeong;Herault, Mikael;Fournier, Vincent;Lee, Kyeong-Jun
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.3
    • /
    • pp.109-120
    • /
    • 2021
  • Protein hydrolysates and krill meal (KM) are used as protein sources in aquafeeds. The study was conducted to examine the supplemental effects of shrimp protein hydrolysates (SH) or KM in a high-plant-protein diet for red seabream (Pagrus major). A fish meal (FM)-based diet (40%) was considered as the high-FM diet (HFM) and a diet containing 25% FM and soy protein concentrate, in the expense of FM protein from HFM diet, was considered as the low fish meal (LFM) diet. Two other experimental diets (SH and KM) were prepared by including SH and KM into LFM diet at 5% inclusion levels in exchange of 5% FM from the LFM diet. A feeding trial was conducted for fifteen weeks using triplicate group of fish (Initial mean body weight, 8.47 ± 0.05 g) for a diet. Growth performance and feed efficiency of fish were significantly enhanced by HFM, KM and SH supplemented diets over those of fish fed LFM diet. Interestingly, these parameters of fish fed SH diet showed better performance than KM and HFM groups. Liver IGF-I expression of fish fed SH diet was comparable to HFM group and higher than KM and LFM diets. Protein digestibility of SH diet was significantly higher than KM, HFM, and LFM diets. Dry matter digestibility of SH diet was comparable to HFM diet and significantly higher than KM and LFM diets. Nitro blue tetrazolium and superoxide dismutase activities of HFM, SH and KM groups were significantly elevated than the LFM group and SH diet increased catalase and glutathione peroxidase activities of fish compared to KM and LFM groups. Hemoglobin level and hematocrit of fish fed SH and KM diets were significantly higher than LFM group. A diet containing 20% FM with KM is comparable to a HFM diet which contains 40% FM for red seabream. SH can be used to replace FM from red seabream diet down to 20% and fish performance can be improved better than a diet containing 40% FM. Overall, it seems that SH is more effective ingredient in red seabream diet compared to KM.