• Title/Summary/Keyword: plant selection

Search Result 1,320, Processing Time 0.02 seconds

Technical Development for Large DNA Fragment Transformation in Plants

  • Park, Su-Ryun;Seo, Mi-Suk;Lee, Sang-Kug;Park, Jee-Young;Kim, Hye-Ran;Lee, Hyo-Yeon;Bang, Jae-Wook;Lim, Yong-Pyo
    • Journal of Plant Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • For large DNA fragment transformation in dicots and monocots, BIBAC2 vector system was applied to Arabidopsis thaliana and Oryza sativa L. cv. Jinmi as a model plant, respectively. For Arabidopsis, the Th1 gene in T23L3 BAC clone whose size is about 90 kb was used as the target gene source for transformation. Because T23L3 BAC clone was originally constructed in pBelloBAC11, the target gene was reconstructed into BIBAC2. As the results of reconstruction, 476 colonies were survived in selection medium containing 40 mg/L kanamycin. In colony hybridization analysis, 24 out of 476 colonies exhibited positive signals. In the pulsed-field gel electrophoresis analysis, 11 out of 24 positive clones exhibited the band at the location of 90 kb. In Southern hybridization, positive signal band at the location of 90 kb was observed in all 11 transformants. Using these verified clones, Agrobacterium-mediated transformation was applied to Arabidopsis thaliana th1-201 mutant for genetic complementation test. Twelve thousands T$_1$ seeds were harvested, and antibiotic selection test is being analyzed to verify whether these seeds were transformed. for rice, COR356 that contains 150 kb human genomic DNA in a BIBAC2 vector was used as the target gene. As the results of transformation, 151 out of 210 co-cultivated calli were survived in selection medium containing 5 mg/L hygromycin, and 45 out of 151 survived calli were regenerated into plants. Transformation efficiency was 21.6%. Progeny test using 71 seeds is being analyzed now. These results provide the potential that large DNA fragments can be transferred into both dicots and monocot by Agrobacterium-mediate d transformation system.

  • PDF

Occurrence and Evolutionary Analysis of Coat Protein Gene Sequences of Iranian Isolates of Sugarcane mosaic virus

  • Moradi, Zohreh;Nazifi, Ehsan;Mehrvar, Mohsen
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.296-306
    • /
    • 2017
  • Sugarcane mosaic virus (SCMV) is one of the most damaging viruses infecting sugarcane, maize and some other graminaceous species around the world. To investigate the genetic diversity of SCMV in Iran, the coat protein (CP) gene sequences of 23 SCMV isolates from different hosts were determined. The nucleotide sequence identity among Iranian isolates was more than 96%. They shared nucleotide identities of 75.5-99.9% with those of other SCMV isolates available in GenBank, the highest with the Egyptian isolate EGY7-1 (97.5-99.9%). The results of phylogenetic analysis suggested five divergent evolutionary lineages that did not completely reflect the geographical origin or host plant of the isolates. Population genetic analysis revealed greater between-group than within-group evolutionary divergence values, further supporting the results of the phylogenetic analysis. Our results indicated that natural selection might have contributed to the evolution of isolates belonging to the five identified SCMV groups, with infrequent genetic exchanges occurring between them. Phylogenetic analyses and the estimation of genetic distance indicated that Iranian isolates have low genetic diversity. No recombination was found in the CP cistron of Iranian isolates and the CP gene was under negative selection. These findings provide a comprehensive analysis of the population structure and driving forces for the evolution of SCMV with implications for global exchange of sugarcane germplasm. Gene flow, selection and somehow homologous recombination were found to be the important evolutionary factors shaping the genetic structure of SCMV populations.

Bioloistic-mediated Transformation of Cotton (Gossypium hirsutum L.): Embryogenic Calli as Explant

  • Haq Ikram-ul;Asad Shaheen;Zafar Yusuf
    • Journal of Plant Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.211-218
    • /
    • 2005
  • Genetic transformation was carried out by using biolistic gun method. The hypocotyl derived embryogenic calli (explants) of cotton (Gossypium hirsutum L.) cv. Cocker-312 were transformed with a recombinant pGreen II plasmid, in which both, bar (selection marker) and GUS (${\beta}$-glucuronidase) reporter genes were incorporated. Explants were arranged on osmoticum-containing medium (0.5M mannitol) 4 hours prior to and 16 hours after bombardment that was resulted into an increase about >80% for GUS stable expression. 3 days after bombardment, GUS assay was performed, which exhibited, $18.36{\pm}1.00$ calli showed blue spots. The transformed embryogenic calli were cultured on selection medium (@ 6 mg/L basta) for 3 months. The putative transgenic plants were developed via selective somatic embryogenesis (@1.50 mg/L basta); maximum $27.58{\pm}1.25$ somatic embryos were obtained while $17.47{\pm}1.00$ embryos developed into plantlets (@ 0.75mg/L basta). In five independent experiments, up to 7.24% transformation efficiency was recorded. The presence of the transgenes was analyzed by using PCR and southern hybridization analysis. The transgenic plants were developed with in 6-7 months, but mostly transformants were abnormal in morphology.

Agronomic Characters and Their Correlation Coefficient on Black Seeded Soybeans Collected in Chonnam Province

  • Kwon, Byung-Sun;Choi, Seong-kyu;Shin, Jeong-Sik;Shin, Dong-Youn;Kyu Hwan
    • Plant Resources
    • /
    • v.5 no.2
    • /
    • pp.118-123
    • /
    • 2002
  • In order to obtain the genetic information on the quantitative characters of black seeded soybeans, which would be needed to improve selection efficiency for breeding high yielding genotype, 45 varieties of black seeded soybeans collected in Chonnam, Korea were grown and variations of several important characters were observed. Heritability of each observed character, phenotypic and genotypic correlations among the characters and contribution of each yield component on grain yield through path coefficient analysis were estimated. Both number of pods per plant and 100-seed weight showed not only high heritability but also highly significant phenotypic and genotypic correlation with seed yield, and hence it was desirable to select plants with more number of pods per plant and higher 100-seed weight than raise seed yield of black seeded soybeans collected in Chonnam. In addition, number of pods per and 100-seed weight were proved to be the most influential variables on the viability of seed yield by path coefficient analysis. Since these showed the high heritability of number of pods per plant, selection of plants with higher 100-seed weight would be more efficient for breeding high yielding genotype.

  • PDF

Study on the Selection of Voltages for Economic Low Voltage Power Distribution System (경제적인 저압 동력계통 전압방식에 관한 연구)

  • Chang, Choong-Koo;Suh, Sang-Jin;Lee, Min-Young
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.157-160
    • /
    • 2001
  • The selection of voltage is one of the most significant factors in the design of power system for industrial plant. It is a major factor in determining over-all system cost, flexibility, and ease of future expansion. This paper presents the study results on the selection of economic voltage for low voltage power distribution system.

  • PDF

Biological indicators to monitor responses against climate change in Korea

  • Lee, Byoung-Yoon;Nam, Gi-Heum;Yun, Jong-Hak;Cho, Ga Youn;Lee, Jin Sung;Kim, Jin-Han;Park, Tae Seo;Kim, Kigyoung;Oh, Kyounghee
    • Korean Journal of Plant Taxonomy
    • /
    • v.40 no.4
    • /
    • pp.202-207
    • /
    • 2010
  • The most useful criteria and selection procedures of biological indicators have been developed in Korea because they have taken into account local and national concerns on biological responses against climate change. On the basis of these criteria and selection procedures, 100 climate-sensitive biological indicator species were selected to predict biodiversity distribution shift by climate change and manage biological resources integratedly at the national level. It is expected that selection and monitoring of biological indicators by climate change will provide significant information to prepare protective strategies of vulnerable species against climate change and adaptive policies under the changing environment in Korea. In this paper, we have reviewed what kinds of criteria were considered in selecting bioindicators to assess responses of biological organisms against climate change. Definition and selection steps of bioindicators were proposed, and the 100 species of climate- sensitive biological indicators were selected out of 33,253 taxa reported in Korea.

Selection of Ginseng Superior Lines Tolerant to Salt Stress Through Zygotic Embryo Culture (배배양에 의한 인삼우수계통으로부터 염류 Stress 내성 계통의 선발)

  • 양덕춘;윤영상;김무성
    • Korean Journal of Plant Resources
    • /
    • v.17 no.3
    • /
    • pp.257-264
    • /
    • 2004
  • Selection of stress-tolerant ginseng lines in fields is very difficult because it is almost impossible to control properly the environmental conditions of soil. On the contrary, it can be studied with ease to search for stress-tolerant ginseng lines through in vitro culture because of easy manipulation of stress conditions. This study was conducted for the selection of ginseng pure lines tolerant to salt stress. Murashige & Skoog(MS) media with 2.5 folds of KNO$_3$, NH$_4$NO$_3$, MgSO$_4$.7$H_2O$, KH$_2$PO$_4$, and CaC1$_2$.2$H_2O$ was established for the selection of ginseng pure lines tolerant to salt stress in vitro. Among 88 ginseng pure lines bred by Korea Ginseng and Tobacco Research Institute, Punggi Hwangsuk, 78093, 82886, 78135, 86024 and KG104 lines was tolerant to salt stress. For the stable production of quality Korean ginseng, genetic tolerance to salt stress is one of important factors since relatively high salt concentrations in the ginseng nursery soil environment of Korea. Ginseng inbred pure lines were tested for their tolerance to salt stress through in vitro culture technique.

Highly efficient production of transgenic Scoparia dulcis L. mediated by Agrobacterium tumefaciens: plant regeneration via shoot organogenesis

  • Aileni, Mahender;Abbagani, Sadanandam;Zhang, Peng
    • Plant Biotechnology Reports
    • /
    • v.5 no.2
    • /
    • pp.147-156
    • /
    • 2011
  • Efficient Agrobacterium-mediated genetic transformation of Scoparia dulcis L. was developed using Agrobacterium tumefaciens strain LBA4404 harboring the binary vector pCAMBIA1301 with ${\beta}$-glucuronidase (GUS) (uidA) and hygromycin phosphotransferase (hpt) genes. Two-day precultured leaf segments of in vitro shoot culture were found to be suitable for cocultivation with the Agrobacterium strain, and acetosyringone was able to promote the transformation process. After selection on shoot organogenesis medium with appropriate concentrations of hygromycin and carbenicillin, adventitious shoots were developed on elongation medium by twice subculturing under the same selection scheme. The elongated hygromycin-resistant shoots were subsequently rooted on the MS medium supplemented with $1mg\;l^{-1}$ indole-3-butyric acid and $15mg\;l^{-1}$ hygromycin. Successful transformation was confirmed by PCR analysis using uidA- and hpt-specific primers and monitored by histochemical assay for ${\beta}$-GUS activity during shoot organogenesis. Integration of hpt gene into the genome of transgenic plants was also verified by Southern blot analysis. High transformation efficiency at a rate of 54.6% with an average of $3.9{\pm}0.39$ transgenic plantlets per explant was achieved in the present transformation system. It took only 2-3 months from seed germination to positive transformants transplanted to soil. Therefore, an efficient and fast genetic transformation system was developed for S. dulcis using an Agrobacterium-mediated approach and plant regeneration via shoot organogenesis, which provides a useful platform for future genetic engineering studies in this medicinally important plant.

Genetic Analysis of Growth Response to Cold Water Irrigation in Rice

  • Han, Long-Zhi;Koh, Hee-Jong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.1
    • /
    • pp.26-31
    • /
    • 2000
  • This study was carried out to obtain the basic information for breeding cold-tolerant rice varieties with high yield-productivity through wide crosses between indica and japonica rice. Genetic analysis was conducted using 55 F$_1$s obtained from half-diallel crosses among eleven cultivars of various origin including indica and japonica rice. Screening for cold tolerance was done with cold-water irrigation after transplanting until ripening stage. Both general combining ability (GCA) and specific combining ability (SCA) effects were highly significant in all characters associated with dry matter accumulation at 30 and 50days after cold-water irrigation (DAC). The variance of GCA was much larger than that of SCA in plant height, shoot dry weight per plant (DWP), crop growth rate (CGR) and cold-water response index (CRI) of these characters except CRI of shoot dry weight per plant. The DWP, CGR and CRI of these characters of Gaochan 102, Tong88-7 and TR22183 were markedly higher than those of the others. GCA effects of these varieties on DWP, CGR and their CRI were also higher than those of the others, indicating that they are useful as promising parents for breeding cold-tolerant varieties. Analysis of genetic parameters for 11$\times$11 half-diallel F$_1$s revealed that inter-locus gene interaction were concerned in the expression of plant height at 50 DAC, CRI of DWP at 50 DAC, and CRI of CGR, and that intra-locus gene interaction for plant height and the other characters were partial dominance and over-dominance, respectively. Narrow-sense heritability (h$^2$$_{N}$) was the highest in plant height as 0.729, and the lowest in CRI of DWP at 30 DAC as 0.048, suggesting that selection for cold tolerance will be quite effective in case that the selection criterion is the performance itself.f.

  • PDF

GUS Gene expression and plant regeneration via somatic embryogenesis in cucumber (Cucumis sativus L.) (오이에서 체세포배 발생을 통한 GUS유전자의 발현 및 식물체 재생)

  • Kim, Hyun-A;Lee, Boo-Youn;Jeon, Jin-Jung;Choi, Dong-Woog;Choi, Pil-Son;Utomo, Setyo Dwi;Lee, Jae-Hyoek;Kang, Tong-Ho;Lee, Young-Jin
    • Journal of Plant Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.275-280
    • /
    • 2008
  • One of the limitation for Agrobacterium-mediated transformation via organogenesis from cotyledon explants routinely in cucumber is the production of chimeric plants. To overcome the limitation, Agrobacterium-mediated transformation system via somatic embryogenesis from hypocotyl explants of cucumber (c.v., Eunsung) on the selection medium with paromomycin as antibiotics was developed. The hypocotyl explants were inoculated with Agrobacterium tumefaciens strain EHA101 carrying binary vector pPTN290; then were subsequently cultured on the following media: co-cultivation medium for 2 days, selection medium for $5{\times}14$ days, and regeneration medium. The T-DNA of the vector (pPTN290) carried two cassettes, Ubi promoter-gus gene as reporter and 35S promoter-nptll gene conferring resistance to paromomycin as selectable agent. The confirmation of stable transformation and the efficiency of transformation was based on the resistance to paromomycin indicated by the growth of putative transgenic calli on selection medium amended with 100mg/L paromomycin, and GUS gene expression. Forty eight clones (5.2%) with GUS gene expressed of 56 callus clones with resistance to paromomycin were independently obtained from 928 explants inoculated. Of 48 clones, transgenic plants were only regenerated from 5 clones (0.5%) at low frequency. The histochemical GUS assay in the transgenic seeds ($T_1$) also revealed that the gus gene was successfully integrated and segregated into each genome of transgenic cucumber.