• Title/Summary/Keyword: plant operation

Search Result 2,292, Processing Time 0.035 seconds

Analysis of severe accident progression and Cs behavior for SBO event during mid-loop operation of OPR1000 using MELCOR

  • Park, Yerim;Shin, Hoyoung;Kim, Seungwoo;Jin, Youngho;Kim, Dong Ha;Jae, Moosung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2859-2865
    • /
    • 2021
  • One of the important issues raised from the Fukushima-Daiichi accident is the safety of multi-unit sites when simultaneous accidents occur at the site and recently a multi-unit PSA methodology is being developed worldwide. Since all operation modes of the plant should be considered in the multi-unit PSA, the accident analysis needs to be performed for shutdown operation modes, too. In this study, a station blackout during the mid-loop operation is selected as a reference scenario. The overall accident progression for the mid-loop operation is slower than that for the full-power operation because the residual heat per mass of coolant is about 6 times lower than that in the mid-loop scenario. Though the fractions of Cs released from the core to the RCS in both operation modes are almost the same, the amount of Cs delivered to the containment atmosphere is quite different due to the chemisorption in the RCS. While 45.5% of the initial inventory is chemisorbed on the RCS surfaces during the full-power operation, only 2.2% during the mid-loop operation. The containment remains intact during the mid-loop operation, though 83.9% of Cs is delivered to the containment.

Development of VR Monitoring System for Gas Plant (가상현실을 이용한 가스플랜트의 VR Monitoring System 개발)

  • Suh, Myung-Won;Cho, Ki-Yang;Park, Dae-You
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.213-218
    • /
    • 2001
  • VR (Virtual reality) technologies have given engineers the ability to design, test, and evaluate engineering systems in a virtual environment. The virtual plant is the highlight of the application of the VR technology to plant engineering. Plant design, maintenance, control, management, operation are integrated in the virtual plant. The VR monitoring system including the concept of the virtual plant is developed to replace a current control room that has number of gages and warning lamps in two-dimensional panels which shows the operating status of a plant. The operating status of the plant is displayed in the VR monitoring system through the realistic computer graphics. Sophisticated, realistic and prompt control becomes possible. The VR monitoring system consists of advanced visualization, walk-through simulation and navigation. In the virtual environment, a user can navigate and interact with each component of a plant. In addition, the user can access the information by just clicking interesting component. The VR monitoring system is operated with various modules, such as (1) virtual plant constructed with Graphic Management System (GMS), (2) Touch & Tell System, and (3) Equipment DB System of Part. In order to confirm the usefulness of the VR monitoring system, a pilot gas plant which is currently being used for plant operator training is taken as application. The end of the paper gives an outlook on the future work and a brief conclusion.

  • PDF

Loading pattern design and economic evaluation for 24-month cycle operation of OPR-1000 in Korea

  • Jeongmin Lee;Hyun Chul Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1167-1180
    • /
    • 2023
  • Due to the tightened regulatory environment since the Fukushima accident, the capacity factor of Korean nuclear power plants has been declining since 2011. To overcome this circumstance, a shift from 18-month to 24-month cycle operation is being considered in Korea. Therefore, in this study, loading patterns(LPs) for 24-month cycle operation of the Korean standard nuclear power plant(OPR-1000) are suggested and economic evaluations are performed. A single-zone LP with 89 fresh fuels was evaluated to be optimal for 24-month operation of OPR-1000 in terms of economic gain. The 24-month operation of OPR-1000 with this LP gives a profit of 7.073 million dollars per year compared to 18-month operation.

Analysis of Operational Economic Efficiency in a Cogeneration Power Plant (열병합 발전소의 운전경제성 분석에 관한 연구)

  • Kim, Gun-Hoe;Hur, Jin-Huek;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.5 no.1
    • /
    • pp.40-44
    • /
    • 2009
  • This study presents an operational technique to maximize the profit of a cogeneration power plant under cost-based pool power market. In benefit side energy sale profit, heat sale profit, and supplementary fund profit for electric power industry are included and the changeable cost was considered in cost side. The profit of a cogeneration power plant is varied enormously by the operation conditions, and constraint conditions. The result of this case study can be used as a reference to a cogeneration power plant under the same power trading system.

  • PDF

Improvement of Operating Efficiency on Advanced Wastewater Plant Using Statistical Approach (고도처리 효율 향상을 위한 통계적 접근)

  • Moon, Kyung-Sook;Min, Kyung-Sub;Kim, Seung-Min;Lee, Chan-Hyung
    • Journal of Environmental Science International
    • /
    • v.17 no.4
    • /
    • pp.405-412
    • /
    • 2008
  • Statistical analysis technique was applied to operating parameters and removal efficiency data sets obtained from advanced wastewater treatment plant during 1 year. Through factor analysis three factors derived varimax rotation were selected each plant. Three components explained 96%, 87% of the total variance of the process, respectively. The components on $A_2O$ Plant were identified in the following order : 1) Shortening the SRT during high-flow period, 2) Keeping biomass high on winter 3) factor was related to DO. On DNR plant, we defined them as follows: factor 1, Prolonged the SRT during high-flow period; factor 2 was related to sludge return; factor 3, Influent BOD during low-DO period. This technique was believed to assist operators in identifying priorities to improve operation efficiency.

Power cost evaluation of 350 MWe nuclear power plant (350MWe 원자력 발전소의 발전원가 추정)

  • 노윤래
    • 전기의세계
    • /
    • v.16 no.4
    • /
    • pp.41-49
    • /
    • 1967
  • This paper covers an estimation and analysis of generating cost of 350MWe nuclear power plant using a pressurized water reactor on the assumption that such a nuclear power plant would be constructed in Korea in or around 1970. For the evaluation of this generating cost, an extensive study has been conducted based on the current information on operating and costing parameters of light water reactors, particularly those of pressurized water reactors. Based on this study, a total generating cost of 7.29 Mills/Kwh was evaluated by operating the plant at 80% plant factor. For this calculation, a steady state method was introduced. It is considered, therefore, that a total generating cost in the beginning of plant operation would be a little higher than 7.29 Mills/Kwh, which has been calculated in the state of equilibrium.

  • PDF