• Title/Summary/Keyword: plant oil

검색결과 1,204건 처리시간 0.025초

고선택성 유수분리 소재 기술 (Advances in Highly Selective Materials for the Separation of Oil-Water)

  • 엄성현;최광순;이동헌
    • 공업화학
    • /
    • 제30권2호
    • /
    • pp.141-144
    • /
    • 2019
  • 물 재이용을 위한 오일 폐수 처리 기술은 일반적으로 물과 오일을 분리하고자 하는 유수분리장치를 이용하는데, 최근 다양한 표면 개질 방법을 이용하여 기능성이 향상된 유수분리막을 기반으로 유수분리장치를 구현하고자 하는 연구개발이 지속적으로 이어지고 있다. 분리막 소재 기술은 분리 선택성 및 내구성 등 성능뿐만 아니라 경제성 및 가공성등 상용화를 위한 적용성이 검토되어야 하며, 소재의 최적 성능을 최대한 발휘될 수 있도록 효과적인 장치가 구비되어야 한다. 본 논문에서는 분리막 소재의 상용 수준의 대면적 가공성 및 효과적인 유수분리 장치에 대해서 고찰하고자 한다.

Constituents of the Essential Oil from Eclipta prostrata L.

  • Chang, Kyung-Mi;Kim, Gun-Hee
    • Preventive Nutrition and Food Science
    • /
    • 제14권2호
    • /
    • pp.168-171
    • /
    • 2009
  • The volatile aroma constituents of Eclipta prostrata L. (leaves, stems, and flowers) were isolated by hydro-distillation extraction method and analyzed by GC/MS. The yield of Eclipta prostrata L. essential oil was 0.1% (v/w), and its color was yellow. Sixty-eight volatile flavor compounds, which make up 71.15% of the total volatile composition of the essential oil were tentatively characterized. It contained 35 hydrocarbons (56.25%) with sesquiterpene predominating, 12 alcohols (3.05%), 8 ketones (3.83%), 9 aldehydes (1.86%), 2 oxides (6.03%), and 2 esters (0.13%). ${\alpha}$-Humulene, 6,9-heptadecadiene, (E)-${\beta}$-farnesene, and ${\alpha}$-phellandrene were the major abundant aroma components in Eclipta prostrata L., aromatic and medicinal plant.

Effect of Seeding Time on Fatty Acid Composition, Oil Contents and Seeds Yield in Flax

  • Choi, Hong Jib;Park, Shin Young;Kim, Sang Kuk
    • 한국자원식물학회지
    • /
    • 제25권6호
    • /
    • pp.700-706
    • /
    • 2012
  • Influences of different seeding dates on growth, seed yield, fatty acid composition and oil content were investigated in flax plants for two years. The results indicated that plant height in early seeding date was higher than that of delayed seeding dates during first season. Furthermore, seeding date also significantly affected the ripened seed rate and the rate increased with the delay in seeding date in first season. Seed yield in the first crop season was significantly higher than the second crop season. Palmitic acid showed variation in different seeding dates. Contrarily, stearic acid was stable and did not changed by different seeding dates. Linolenic acid was found in highest amount in all seeding dates consecutively in two cropping years. Highest oil content was recovered from the seeds of flax sown at 29 Apr. and May 9 in first and second cropping year respectively.

Volatile Flavor Compounds of Saussurea lappa C.B. Clarke Root Oil by Hydro Distillation-GC and $GC/MS^+$

  • Chang, Kyung-Mi;Kim, Gun-Hee
    • Food Quality and Culture
    • /
    • 제1권1호
    • /
    • pp.13-17
    • /
    • 2007
  • The volatile flavor compounds of Saussurea lappa C.B. Clarke, a perennial, aromatic and medicinal herbaceous plant of the Asteraceae family, were isolated by the hydro distillation extraction method using a Clevenger-type apparatus, and analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). The plant yielded a light yellow colored oil (0.02%, v/w). From S. lappa C.B. Clarke root oil, sixty-three volatile flavor compounds were tentatively identified, among which sesquiterpene was predominant (21.70%). The identified compounds of the root oil constituted 87.47% of the total peak area. From the constituents making up more than 5% of the volatile flavor components, a long-chain aldehyde, (7Z, 10Z, 13Z)-7, 10, 13-hexadecatrienal, was the most abundant volatile flavor compound (21.20%), followed by dehydrocostuslactone (10.30%) belonging to sesquiterpene lactone, valerenol (5.30%) and vulgarol B (5.06%).

  • PDF

Inhibitory Effects of the Essential Oils on Acetaminophen-Induced Lipid Peroxidation in the Rat

  • Choi, Jong-Won;Lee, Kyung-Tae;Jung, Won-Tae;Jung, Hyun-Ju;Lee, Seung-Hyung;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • 제8권1호
    • /
    • pp.18-22
    • /
    • 2002
  • Inhibitory effects of the essential oils obtained from ten herbs were tested on acetaminophen-induced lipid peroxidation in the rat. The oil of Artemisia princeps var. orientalis buds (AP-oil) showed the most significant hepatic malondialdehyde value which was comparable to those of ascorbic acid and methionine. This was warranted by the protective effect on hepatic glutathione depletion. Overview of the data on the activities of hepatic microsomal enzymes, aminopyrine N-demethylase and aniline hydroxylase led to the notice that the suppressed activities of those enzymes are mainly responsible for the anti-lipid peroxidation. The interpretation of GC-MS data on the AP-oil revealed the ingredient of cineol, thujone, carvone, borneol, camphor and terpineol.

Chemical Components of Atractylodes japonica Rhizome Oil

  • Chang, Kyung-Mi;Kim, Gun-Hee
    • Preventive Nutrition and Food Science
    • /
    • 제15권2호
    • /
    • pp.147-151
    • /
    • 2010
  • The volatile aroma constituents of Atractylodes japonica rhizome were separated by steam distillation extraction method using a Clevenger-type apparatus, and analyzed by gas chromatography-mass spectrometry (GC/MS). The yield of the essential oil from Atractylodes japonica was 1.0% (v/w), and its color was pale yellow. Forty-five volatile flavor compounds, which make up 93.86% of the total peak area, were tentatively identified in the rhizome oil. The oil contained 32 hydrocarbons (79.19%) with sesquiterpene hydrocarbon predominating, 3 esters (12.46%), 4 alcohols (0.11%), 1 ketone (0.01%), 2 aldehydes (0.02%), and 3 miscellaneous compounds (2.07%).

Anti-inflammatory Activities of Chopi (Zanthoxylum piperitum A.P. DC) Essential Oil: Suppression of the Inducible Nitric Oxide Synthase and Cellular Adhesion

  • Lee, Je-Hyuk;Chang, Kyung-Mi;Kim, Gun-Hee
    • Food Science and Biotechnology
    • /
    • 제18권6호
    • /
    • pp.1371-1378
    • /
    • 2009
  • The aim of this study is to elucidate the anti-inflammatory activities of chopi (Zanthoxylum piperitum A.P. DC.) essential oil. Essential oil (EO) of chopi was extracted by steam distillation method, and its major constituents were limonene and geranyl acetate. Chopi-EO decreased approximately 38% of nitrite production, as compared to the lipopolysaccharde (LPS)-induced nitrite production. However, chopi-EO and its components did not quench nitric oxide (NO) chemically in cellfree system, and markedly inhibited approximately 40.4% of inducible nitric oxide synthase (iNOS) mRNA transcription. In addition, the inhibition of E-selectin gene transcription by chopi-EO caused the suppression of cellular adhesion. These results suggest that chopi-EO may exert potential anti-immunological inflammatory activity.

Varietal Differences of Nutrient Quality of Rape in Spring Sowing

  • Kwon, Byung-Sun
    • Plant Resources
    • /
    • 제7권2호
    • /
    • pp.104-109
    • /
    • 2004
  • This study was conducted to investigate the possibility that oil seed rape could be used as a forage fodder crop and to select the most suitable variety of forage rape at the southern area of Korea, Two varieties of oil seed rape currently grown for oil production and six introduced varieties of forage rape with relatively high yield and high nutritional value were grown at the same condition and their nutritional value were observed in Spring. Generally, rape was considered as a useful forage fodder crop with high content of crude protein and low contents of NDF, ADF, hemicellulose, cellulose and lignin. Differences in mean values of the above characters between two groups of rape were not statistically significant. Velox showed significantly higher content of crude protein and significantly lower contents of NDF, ADF, hemicellulose, cellulose and lignin compared with other varieties of forage rape in spring. Rape was relatively high in IVDMD compared with other forage fodder crops, and forage rape was more or less in IVDMD and DDMW than oil seed rape. Velox was the highest in IVDMD and DDMW among the varieties of forage rape in Spring, in this experiment.

  • PDF

Volatile Aroma Composition of Chrysanthemum indicum L. Flower Oil

  • Chang, Kyung-Mi;Kim, Gun-Hee
    • Preventive Nutrition and Food Science
    • /
    • 제13권2호
    • /
    • pp.122-127
    • /
    • 2008
  • The aroma constituents of Chrysanthemum indicum L. were separated by the hydro distillation extraction method using a Clevenger-type apparatus, and were analyzed by gas chromatography-mass spectrometry (GC/MS). The yield of Chrysanthemum indicum L. flower oil was 2.0% (w/w) and the color was light golden yellow. Sixty-three volatile flavor components, which make up 89.28% of the total aroma composition of the flower oil, were tentatively characterized. This essential oil contained 35 hydrocarbons (48.75%), 12 alcohols (19.92%), 6 ketones (15.31%), 3 esters (4.61%), 5 aldehydes (0.43%), 1 oxide (0.22%), and 1 miscellaneous component (0.04%). ${\alpha}$-Pinene (14.63%), 1,8-cineol (10.71%) and chrysanthenone (10.01%) were the predominant volatile components in Chrysanthemum indicum L., an aromatic medicinal herbaceous plant.

혼소율을 고려한 화력 발전소의 CO2 대기배출량 계산 (Calculation of CO2 Emission for Fossil-Fired Thermal Power Plant considering Coal-Oil Mix Rate)

  • 이상중;김순기
    • 조명전기설비학회논문지
    • /
    • 제24권10호
    • /
    • pp.67-72
    • /
    • 2010
  • G8 summit meeting held in July 2008 decided to set up a long-term goal, by 2050, reducing the world greenhouse emissions by half of those emitted in 1990. In November 2009, the Government announced to reduce the national $CO_2$ emission by 30[%] of BAU by 2020. Electric power industries in Korea produce most of their electricity by burning fossil fuels, and emit approximately 28[%] of national $CO_2$ emissions. Monitoring the $CO_2$ emissions. Monitoring the $CO_2$ emission of electric power plants is very important. This paper presents a method to calculate the hourly $CO_2$ emission for a thermal power plant burning mixture of coal and oil using the performance test data and coal-oil mix rate. An example of $CO_2$ emission calculation is also demonstrated.