• Title/Summary/Keyword: plant nutrient

Search Result 1,367, Processing Time 0.027 seconds

Nutrient Contents of Bracken (Pteridium aquilinum L.) and Soil Chemical Properties of Its Habitat in the Coastal Area (남서해안 고사리 생육지의 토양화학적 특성과 고사리식물체의 무기성분 함량)

  • Lee, Soo-Young;Park, Kang-Yong;Park, Yang-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.631-636
    • /
    • 2010
  • One experiment was carried out to investigate the soil chemical properties of bracken growth and the inorganic element contents of plant. To the results of soil analysis in native bracken (Pteridium aquilinum L.) growth, soil pH was 5.2, organic matter was 19 g $kg^{-1}$ and available phosphate was 20 mg $kg^{-1}$, and exchangeable potassium, calcium, magnesium were 0.32, 2.0 and 1.3 $cmol_c\;kg^{-1}$, respectively. In the bracken cultivation soil, pH was 5.7, organic matter was 13 g $kg^{-1}$ and available phosphate 367 mg $kg^{-1}$, and exchangeable potassium, calcium and magnesium were 0.81, 4.0 and 1.4 $cmol_c\;kg^{-1}$, respectively. The soil pH, available phosphate and exchangeable calcium were much lower in bracken native soil than those of cultivation soil, while organic matter was a little higher in native soil than that of cultivation soil. In native bracken plants, three major elements of nitrogen, phosphorus and potassium, were 4.40, 0.55 and 3.40%, calcium and magnesium were 0.22 and 0.32%, and microelements of iron (Fe), manganese (Mn), copper (Cu), zinc (Zn) and boron were 126, 210, 23, 75 and 11 mg $kg^{-1}$, respectively. In cultivation bracken, three major elements of nitrogen, phosphorus and potassium, were 5.50, 0.73 and 3.55%, calcium and magnesium were 0.17 and 0.28%, and microelement contents of iron (Fe), manganese (Mn), copper (Cu), zinc (Zn) and boron (B) were 120, 252, 19, 72 and 20 mg $kg^{-1}$, respectively.

Ameliorating Effect of $\textrm{Ca}({NO_3})_2$ or $\textrm{CaCl}_2$ on the Growth and Yield of NaCl-Stressed Tomato Grown in Plastic Pots Filled with Soil (NaCl 스트레스를 받은 토마토의 생육 향상을 위한 $\textrm{Ca}({NO_3})_2$$\textrm{CaCl}_2$ 처리 효과)

  • 강경희;권기범;최영하;김회태;이한철
    • Journal of Bio-Environment Control
    • /
    • v.11 no.3
    • /
    • pp.127-132
    • /
    • 2002
  • Enhanced supply of $Ca^{2+}$ as well as NO$_3$$^{[-10]}$ is known to restrict the uptake of the Na$^{+}$ and Cl$^{[-10]}$ ion and ameliorate growth under saline conditions. This test was conducted to investigate the ameliorating effects of Ca(NO$_3$)$_2$ or CaCl$_2$ on the growth and yield of NaCl-stressed tomato plants grown in plastic pot filled with soil. All treatments except for the control were supplied with 80 mM NaCl fur two weeks after transporting. The saline solutions with nutrient were supplemented with either 0, 10 or 20 mM Ca(NO$_3$)$_2$ and either 0, 10 or 20 mM CaCl$_2$ during harvesting time from two weeks after transporting. Ca(NO$_3$)$_2$ or CaCl$_2$ application enhanced the growth such as plant height, fresh weight, dry weight, fruit number, and fruit weight, and yield of NaCl-stressed tomato, and also their effects increased greater as concentration of supplemented Ca(NO$_3$)$_2$ or CaCl$_2$increased. Yield increased in 20 mM Ca(NO$_3$)$_2$ compared with the others except fur the control. Photosynthetic rate in Ca treatments was lower than that of the control, but higher than that of NaCl treatment. Leaf chlorophyll content was higher in Ca treatments compared with the others, especially in younger leaf, while that was not affected by concentration of supplemented Ca. Ca(NO$_3$)$_2$ or CaCl$_2$ supply increased the $K^{+}$ and $C^{2+}$ concentration of tomato plants, whereas the Na$^{+}$ transport to the leaves was inhibited. There was a strong increase in the $K^{+}$/Na$^{+}$ ratio in plants treated Ca(NO$_3$)$_2$, or CaCl$_2$. Cl$^{[-10]}$ content of plants was decreased by supplemental Ca(NO$_3$)$_2$ but Cl$^{[-10]}$ was increased in plants with CaCl$_2$compared with Ca(NO$_3$)$_2$. N concentration in plants of tomato increased with enhanced Ca(NO$_3$)$_2$ or CaCl$_2$supply, In conclusion, our study confirms the potential of Ca(NO$_3$)$_2$ or CaCl$_2$to alleviate NaCl-induced growth reductions in tomato.

Impact of Compositions and Concentrations of Fertilizer Solution on Growth of Lettuce and Changes in Chemical Properties of Root Media (관비용액의 비료 조성 및 농도가 상추의 생장과 근권 환경 변화에 미치는 영향)

  • Shin, Bo Kyuong;Son, Jung Eek;Choi, Jong Myung
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.193-201
    • /
    • 2013
  • This research was conducted to investigate the influence of compositions and concentrations of fertilizer solution on growth of lettuce as well as changes in chemical properties of root media. To achieve this three kinds of fertilizers such as acidic (AF), neutral (NF), and alkaline fertilizer (BF) were formulated and applied with the concentrations of 100 or $200mg{\cdot}L^{-1}$ based on nitrogen concentrations. The growth characteristics were investigated 10 weeks after transplant and the analysis of soil solution for chemical characteristics were conducted in every week. The BF was more effective than AF in crop growth of blue leaf lettuce 10 weeks after transplant and the treatment of BF200 showed the heaviest fresh and dry weights among all treatments tested. The treatment of BF also showed the highest growth followed by those of NF and AF in growth of red leaf lettuce, but the growth in treatments of $100mg{\cdot}L^{-1}$ were higher than those of $200mg{\cdot}L^{-1}$ in the three kinds of fertilizers. The differences among treatments in soil solution pH became larger from week 6. The pH in the treatment of $200mg{\cdot}L^{-1}$ was lower than that of $100mg{\cdot}L^{-1}$ when AF was applied, but the treatment of $200mg{\cdot}L^{-1}$ showed higher pH than that of $100mg{\cdot}L^{-1}$ in case of BF. The electrical conductivity of soil solution in treatments of $200mg{\cdot}L^{-1}$ were 0.2 to 0.4 unit higher than those of $100mg{\cdot}L^{-1}$ when those are measured as $dS{\cdot}m^{-1}$ in three kinds of fertilizers. The $NH_4$ concentrations were higher in the treatments of AF than those of BF, but the concentrations of Ca, Mg and $NO_3$ were vice verse. The concentrations of $PO_4^{-3}$ were the highest in the treatments of AF followed by those of NF and BF when three kinds of fertilizers were applied with equal nitrogen concentrations. The differences of nutrient concentrations in soil solution of root media were influenced by composition of fertigation solution and varied soil solution pH.

Mineral nutrition of the field-grown rice plant -IV. Relationship between yield, total dry matter yield and up take of N.P.K. Si in N.P.K. simple trial (포장재배수도(浦場栽培水稻)의 무기영양(無機營養) -IV 삼요소처리별(三要素處理別) 수량(收量) 및 건물생산량과 N. P. K. Si 흡수량(吸收量)과 관계(關係))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.4
    • /
    • pp.215-220
    • /
    • 1974
  • The relation between yield or total dry matter yield and nitrogen, phosphorus, potassium or silica uptake was investigated according to simple or multiple correlation coefficients, and multiple regression equations. 1. Simple correlation coefficient was always higher with total dry matter yield than with grain yield and highest with N in no nitrogen (0-6-8) or no fertilizer (0-0-0) plot, with P in no phosphorus plot (10-0-8) but lowest with K in no potassium plot (10-6-0). 2. Multiple correlation coefficient was always higher than simple correlation and the same is true with including Si as one more variation. There was clear trend that multiple correlation coefficient was highest in no fertilizer plot and lowest in no potassium plot. 3. Simple correlation coefficient with P was higher in the warm year in which P uptake and fertilizer-P use efficiency were higher while it with K was higher in the cool year in which K uptake and fertilizer-K use efficiency were higher. Nitrogen and silicate followed potassiuum. But partial regression coefficients of N. P. K and Si with yield were mostly significant only in the warm year. 4. Partial regression coefficient of K was negative in many cases with yield but significant positive value with total dry matter yield. 5. Partial regression coefficients of N. P and K were decreased when Si was included and the decrease was great in P. 6. With the increase of nitrogen fertilizer level partial regression coefficient was increased in N but decreased in P, and no consistency in K or Si. 7. According to single or multiple correlation coefficients and partial regression coefficients the contribution of nutrient to grain yield appears to be in the order of N > Si > P > K and to total dry matter yield in the order of N > K > Si > P, indicating that N is the main factor and others are closely related to each other throughout to N. The superiority of N was also proved by frequency pattern of relative yield.

  • PDF

Changes in Barley Yield and Some Physico-chemical Properties of Upland Soil by Longterm Application of Silicate Fertilizer and Compost (밭에서 규산(珪酸) 및 퇴비(堆肥)의 장기연용(長期連用)에 의한 보리수량(收量) 및 토양(土壤)의 이화학성(理化學性) 변화(變化))

  • Kim, Chang-Bae;Park, No-Kwuan;Lee, Suk-Hee;Park, Seon-Do;Choi, Boo-Sull
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.3
    • /
    • pp.195-200
    • /
    • 1994
  • This study was conducted to evaluate the changes in barley yield some physico-chemical properties of soils affected by annual application of N.P.K and N.P.K+silicate fertilizer 250kg/10a and N.P.K+compost 1,000kg/10a to the silty clay loam upland soil during the 18 years from 1975 to 1992. The results obtained are as follows. 1. Barley yield of the 18th year increased by 17~18% in the treatments of N.P.K+compost annually applied in comparison with N.P.K treated plot. So, simillar effect was recognized between the silicate fertilizer and the compost treatment plot. 2. The amount of nutrient's uptake by barley plant at the harvesting stage in the treats of N.P.K+silicate fertilizer and N.P.K+compost annually applied increased by 6~8% in comparison with N.P.K treated plot. Fertilizer's efficiency remarkably increased with $P_2O_5$, and $K_2O$ in the treats of N.P.K+silicate fertilizer and N.P.K+compost annualy applied comparing to N.P.K treated Plot. 3. According to soil analysis after experiment, the N.P.K+silicate fertilizer and N.P.K+compost annually applied plot were increased in soil pH, OM, available $P_2O_5$ exchangable cations and soluble $SiO_2$ content, but the content of $NO_3$-N was low. 4. Average yield of barley for 18 years increased by 22% in the treat of N.P.K+silicate fertilizer 250kg/10a annually applied plot and by 31% in the treat of N.P.K+compost 1,000kg/10a annually applied plot in comparison with N.P.K treated plot.

  • PDF

Interactions between Oxidative Pentose Phosphate Pathway and Enzymes of Nitrate Assimilation "Nitrate Reductase, Nitrite Reductase, Glutamine Synthetase$_1$" and Ammonium Reassimilation "Glutamine Synthetase$_2$" as affected by $No_3$-Concentration ($No_3$-수준이 Oxidative Pentose Phosphate Pathway와 질산동화작용 효소"Nitrate Reductase, Nitrite Reductase, Glutamine Synthetase$_1$" 및 암모늄재동화작용 주요효소"Glutamine Synthetase$_2$"활성도의 상호관계에 미치는 영향)

  • Sohn, Sang-Mok;Michael James Emes
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.5
    • /
    • pp.468-475
    • /
    • 1992
  • In order to understand more clearly the integration between N-assmilation and C-metabolism in relation to N fertilization, a pot experiment with 5 different level of N fertilization(0, 5, 10, 25, 50 mM NO$_3$$_{[-10]}$ ) was conducted in Manchester, U.K. The peas (Pisum sativum L., cv. Early Onward) were sown in vermiculate (5 cm depth) and cultivated for 6 days under temperature controlled dark room conditions ($25^{\circ}C$). The plants received frequent irrigation with a nutrient solution: it was fertilized every 2 days, 3 times a day at 10h, 13h, 16h respectively. Elevated NO$_3$$^{[-10]}$ concentration, the activity levels of NR, NiR, total GS(crude extract), GS$_2$(plastid) in both root and shoot were increased and reached the peak in 5~25 mM, except NiR specific activity which increased its activity continually until 50 mM NO$_3$$^{[-10]}$ treatment. Total activities of GS (crude extract) in both root and shoot became higher than those of GS$_2$(Plastid), and the activity ratios of total GS in the crude extract and GS$_2$ in the plastids were 3.0 to 4.3 in root, but 3.2 to 10.6 in shoot. It was concluded that the reductants and A TP from OPPP itself should be enough to achieve the high rate of NR, NiR, GS$_1$, GS$_2$ in plant root and shoot for reduction or assimilation of nitrogen, but these enzyme activities might be inhibited by an excess of NO$_3$$^{[-10]}$ influx over the reduction capacity.

  • PDF

Desirable Particle Size Distribution of Perlite for Tomato Bag Culture (토마토 자루재배 충진용 펄라이트의 적정 입도분포)

  • Sim Sang-Youn;Lee Su-Yeon;Lee Sang-Woo;Seo Myeong-Whoon;Lim Jae-Wook;Kim Soon-Jae;Kim Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.15 no.3
    • /
    • pp.231-238
    • /
    • 2006
  • The physical properties of seven perlites different in particle size distribution were investigated to develop perlite bag culture in Korea. Particle sizes of 1.0-2.8mm and larger than 2.8 mm were rather evenly distributed in S-1 (1.2-5 mm), S-2 (0.15-5 mm) and S-5 (parat No.1). Larger particles were less in S-3 (1-3 mm), S-4 (Parat No.2), S-6 (OTAVI) and S-7 (Agroperl B-3). S-4, S-6 and S-7 contained lots of particles less than 1 mm in size. Total porosity was similar among substrates with the value of $59{\sim}62%$. Container capacity was between 35-40% regardless of substrates except in S-2 with 27.7%. Water content, which was about 60% at 0 kPa, was decreased sharply at 4.90 kPa regardless of substrates, which meant the easily available water was plenty in any kind of perlite tested. Substrates, S-1, S-2 and S-3 with different particle size distribution, were investigated to evaluate for perlite bag culture. Six tomatoes (Licopersicon esculentum Mill. cv. Rokkusanmaru) were planted in a perlite bag of 40 liters with the dimension of 120cm in length and 34cm in width. The amount of nutrient solution supplied and its drainage dependent on daily integrated radiation didn't show any regular trend during the growth. Roots in the bag were distributed evenly in S-1 and S-2 than in S-3. Plant grown in S-1 showed the highest total and marketable yield of 8,628 and 7,759 kg/10a, respectively. The number of small size fruits and malformed fruits were more in S-3. Consequently, S-1 with the particle size distribution of 1.2-5 mm is suggested as desirable substrate for perlite bag culture.

Changes in Barely Yield and Soil Physcio-Chemical Properties Affected by Long-Term Fertilization to the Upland Soil (밭토양(土壤)에서 삼요소(三要素) 장기연용(長期連用)에 의(依)한 대맥(大麥) 수량(收量) 및 토양(土壤)의 이화학적(理化學的) 성질변화(性質變化))

  • Kim, Chang-Bae;Park, No-Kwuan;Park, Seon-Do;Choi, Dae-Ung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.1
    • /
    • pp.20-24
    • /
    • 1993
  • A long term fertilizer trial has been conducted on a silty clayloam soil with barley as test crop since 1975. The treatments included NPK, NK, NP, and PK, and no fertilizer. This paper is to report the barley yield trend during 16 years(1975~1990) and the soil chemical properties and nutrient uptake by barley in 1990. Following is the summary of the results. 1. The average yield of barley in 16 years were in the order of NPK(100%) > PK(69%) > NP(55%) > No Fertilizer(35%) > NK(24%). Of special interst was that in 16th year the yield of barley in NK plot, namely without P, was nil. 2. In NK plot where the yield of barley was nil in 16th year, the uptake of N, P, and K by plant was lowest amomg the treatments and N, K fertilizer uptake efficiencies were nagative. 3. The soil analysis in 16th year revealed that in NK plot the pH, the available P and exchangeable Ca and Mg were very low. In 16 years average, there was positive correlation between the yield of barley and available P and exchangeable Mg in the soil. One interesting point was that in 16th year the $NO_3-N$ in the soul was relatively high, but N uptake by barley was very low.

  • PDF

Effects of Pig Compost and Liquid Manure on Yield, Nutrients Uptake of Rice Plant and Physicochemical Properties of Soil (돈분 퇴·액비 시용 방법이 벼 양분 흡수, 수량 및 토양물리화학성에 미치는 영향)

  • Lee, Sang-Bok;Cho, Kwang-Min;Baik, Nam-Hyun;Yang, Chang-Hyu;Jung, Je-Hyuck;Kim, Kee-Jong;Lee, Gyung-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.772-778
    • /
    • 2012
  • In order to develop the application method of compost manure (CM) and liquid manure (LM) for rice cultivation, experiments were conducted at silty loam paddy field in Gochang, Jeonbuk, a LM applied rate as N%; non-application, chemical fertilizer (CF) 100%, CM 50%+LM 50%, CM 30%+CF 70% and CM 30%+LM 70% as basal and additional fertilizer. $NH_4^+$-N content in paddy soil was higher with CF 100% application than the split application of compost and liquid pig manure fertilizer during the early stage of rice growth. However, there was no significant difference in the later part of rice growth. Amount of $NO_3^-$-N in leachate was decreased in CM 30%+LM 70% and CM 30%+CF 70% split applications compared to CF 100%. Amounts of OM and Avail $P_2O_5$, Exch. cations in soil of experiment after were highest with the split application of CM 50%+LM 50% and CM 30%+LM 70%. Amount of nutrient uptake of plants were no significant difference between the split application plots of CM and LM, but nitrogen utilization rate was 66% in average CM 50%+LM 50% and CM 30%+LM 70% to compared CF 100%. The rice yield of CM 50%+LM 50% was lower (90%) comparing that of CF 100% ($557kg\;10a^{-1}$). But the yield in CM 30%+CF 70% and CM 30%+LM 70% reached 96% in average, which did not show significant difference with that of CF 100%. Accordingly, LM 70% or CF 70% split application after CM 30% application was helpful in enhancing the physicochemical property of soil as well as reducing CF. It could be evaluated that this application in segmentation was better in productivity improvement and soil pollution reduction than the esinultaneous application of LM 100% in terms of split application in times of requirement for plants.

Effect of Slaked-Lime and Straw on the Soil pH, Nutrient Uptake and Yield of Rice in Akiochi Paddy Field (추락답(秋落沓)에 있어서 소석회(消石灰)와 생고시용(生藁施用)이 토양(土壤) pH, 수도(水稻)의 양분흡수(養分吸收) 및 수량(收量)에 미치는 영향(影響))

  • Ahn, Su-Bong
    • Korean Journal of Agricultural Science
    • /
    • v.3 no.2
    • /
    • pp.145-151
    • /
    • 1976
  • This study was conducted to determine the effect of slaked lime and straw used on the soil pH in the flooded condition and yield of rice grown in AKIOCHI paddy field and their residual effects on the rice plants. The results obtained were summarized as follow: when lime and straw were applied, there was on the average 41% of yield increase over plots treated with three elements of chemical fertilizers. When lime plus straw were used, the growth rate at later stage of rice plant was prominent. Damage due to helminthosporium and blast were found less, the rate of lower-leaf death was low, and grain number, per head, filled grain ratio, and weight of rice grain were higher than control. When lime plus straw were used, higher amount of silicate, calcium, nitrogen and potassium was found in the plants at heading stage. The residual effects of lime plus straw were 20% in the first year, about 10% in the second year and 5% in the third year, respectively. Soil pH was affected by both straw and slaked lime, and it was fixed about 8 days after applying in the flooded condition. The following formulae was suggested from the results in the flooded conditions. $$pH=5.5293+8.6007X_1+2.7836X_2-{6.7422X_1}^2-{1.8522X_2}^2-7.000X_1X_2$$ ($X_1$=slaked lime, $X_2$=straw)

  • PDF