• 제목/요약/키워드: plant growth promoting

검색결과 493건 처리시간 0.031초

INDUCTION OF SYSTEMIC RESISTANCE IN CUCUMBER AGAINST ANTHRACNOSE BY PLANT GROWTH PROMOTING FUNGI

  • Hyakumachi, Mitsuro
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 1997년도 Proceedings of special lectures on Recent Research Trend of Plant Pathology
    • /
    • pp.47-55
    • /
    • 1997
  • Plant growth promoting fungi(PGPF) obtained from zoysiagrass rhizosphere offer dual advantages - induse systemic disease resistance response in cucumber to C. orbiculare infection and cause enhancement of plant growth and increase yield. PGPF protected plants either by colonizing roots or by their metabolites. PGPF offer an advantage by protecting plants for more than 9 weeks and 6 week in the greenhouse and field. PGPF-induced plants limited pathogen spore germination and decreased the number of infection hyphae on the leaf, and increased lignification at places of attempted pathogen infection, thus reducing the pathogen spread. PGPF elicited increased activities of chitinascs, glucanases, peroxidase, polyphenol oxidase, and phenylalanine ammonia lyase to C. orbiculare infection in cucumber plants. The role of PGPF in elevating cucumber defense response to pathogen infection suggests potential application of PGPF as biological control agents.

  • PDF

Application of Bacterial Endophytes to Control Bacterial Leaf Blight Disease and Promote Rice Growth

  • Ooi, Ying Shing;Nor, Nik M.I. Mohamed;Furusawa, Go;Tharek, Munirah;Ghazali, Amir H.
    • The Plant Pathology Journal
    • /
    • 제38권5호
    • /
    • pp.490-502
    • /
    • 2022
  • Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight (BLB) disease in rice (Oryza sativa L.) and it is among the most destructive pathogen responsible for severe yield losses. Potential bacterial biocontrol agents (BCAs) with plant growth promotion (PGP) abilities can be applied to better manage the BLB disease and increase crop yield, compared to current conventional practices. Thus, this study aimed to isolate, screen, and identify potential BCAs with PGP abilities. Isolation of the BCAs was performed from internal plant tissues and rhizosphere soil of healthy and Xoo-infected rice. A total of 18 bacterial strains were successfully screened for in vitro antagonistic ability against Xoo, siderophore production and PGP potentials. Among the bacterial strains, 3 endophytes, Bacillus sp. strain USML8, Bacillus sp. strain USML9, and Bacillus sp. strain USMR1 which were isolated from diseased plants harbored the BCA traits and significantly reduced leaf blight severity of rice. Simultaneously, the endophytic BCAs also possessed plant growth promoting traits and were able to enhance rice growth. Application of the selected endophytes (BCAs-PGP) at the early growth stage of rice exhibited potential in suppressing BLB disease and promoting rice growth.

The Endophytic Bacteria Bacillus velezensis Lle-9, Isolated from Lilium leucanthum, Harbors Antifungal Activity and Plant Growth-Promoting Effects

  • Khan, Mohammad Sayyar;Gao, Junlian;Chen, Xuqing;Zhang, Mingfang;Yang, Fengping;Du, Yunpeng;Moe, The Su;Munir, Iqbal;Xue, Jing;Zhang, Xiuhai
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권5호
    • /
    • pp.668-680
    • /
    • 2020
  • Bacillus velezensis is an important plant growth-promoting rhizobacterium with immense potential in agriculture development. In the present study, Bacillus velezensis Lle-9 was isolated from the bulbs of Lilium leucanthum. The isolated strain showed antifungal activities against plant pathogens like Botryosphaeria dothidea, Fusarium oxysporum, Botrytis cinerea and Fusarium fujikuroi. The highest percentage of growth inhibition i.e., 68.56±2.35% was observed against Fusarium oxysporum followed by 63.12 ± 2.83%, 61.67 ± 3.39% and 55.82 ± 2.76% against Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi, respectively. The ethyl acetate fraction revealed a number of bioactive compounds and several were identified as antimicrobial agents such as diketopiperazines, cyclo-peptides, linear peptides, latrunculin A, 5α-hydroxy-6-ketocholesterol, (R)-S-lactoylglutathione, triamterene, rubiadin, moxifloxacin, 9-hydroxy-5Z,7E,11Z,14Z-eicosatetraenoic acid, D-erythro-C18-Sphingosine, citrinin, and 2-arachidonoyllysophosphatidylcholine. The presence of these antimicrobial compounds in the bacterial culture might have contributed to the antifungal activities of the isolated B. velezensis Lle-9. The strain showed plant growth-promoting traits such as production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, and nitrogen fixation and phosphate solubilization. IAA production was accelerated with application of exogenous tryptophan concentrations in the medium. Further, the lily plants upon inoculation with Lle-9 exhibited improved vegetative growth, more flowering shoots and longer roots than control plants under greenhouse condition. The isolated B. velezensis strain Lle-9 possessed broad-spectrum antifungal activities and multiple plant growth-promoting traits and thus may play an important role in promoting sustainable agriculture. This strain could be developed and applied in field experiments in order to promote plant growth and control disease pathogens.

Identification of FM001 as Plant Growth-Promoting Substance from Acremonium strictum MJN1 Culture

  • JUNG, JAE-HAN;DONG-MIN SHIN;WOO-CHUL BAE;SOON-KWANG HONG;JOO-WON SUH;SANGHO KOO;BYEONG-CHUL JEONG
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권2호
    • /
    • pp.327-330
    • /
    • 2002
  • A plant growth-promoting substance, FM001, was isolated from the culture broth of Acremonium strictum MJN1. The purification steps included solvent extraction, adsorption chromatography using Diaion HP20, TLC on silica, and HLPC using a C-18 column. The purified FM001 enhanced rice seedling growth by $11.1\%\;and\;34.0\%$ of the dried weight of the shoots and roots, and also radish growth by $26.5\%\;and\;23.7\%$ of the top length and dried weight. FM001 also significantly promoted the growth of red pepper by increasing $32.7\%$ of fruit weight and $11.3\%$ as regards the height. FM001 consisted of C, H, O, N, and S, and its molecular weight was determined to be 537.78 Da. The structure of FM001 resembled brassinosteriods, and it would appear to have great potential as an effective bio-fertilizer.

Rhizospheric-Derived Nocardiopsis alba BH35 as an Effective Biocontrol Agent Actinobacterium with Antifungal and Plant Growth-Promoting Effects: In Vitro Studies

  • Mohamed H. El-Sayed;Abd El-Nasser A. Kobisi;Islam A. Elsehemy;Mohamed A. El-Sakhawy
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권5호
    • /
    • pp.607-620
    • /
    • 2023
  • The biocontrol approach using beneficial microorganisms to control crop diseases is becoming an essential alternative to chemical fungicides. Therefore, new and efficient biocontrol agents (BCA) are needed. In this study, a rhizospheric actinomycete isolate showed unique and promising antagonistic activity against three of the most common phytopathogenic fungi, Fusarium oxysporum MH105, Rhizoctonia solani To18, and Alternaria brassicicola CBS107. Identification of the antagonistic strain, which was performed according to spore morphology and cell wall chemotype, suggested that it belongs to the Nocardiopsaceae. Furthermore, cultural, physiological, and biochemical characteristics, together with phylogenetic analysis of the 16S rRNA gene (OP869859.1), indicated the identity of this strain to Nocardiopsis alba. The cell-free filtrate (CFF) of the strain was evaluated for its antifungal potency, and the resultant inhibition zone diameters ranged from 17.0 ± 0.92 to 19.5 ± 0.28 mm for the tested fungal species. Additionally, the CFF was evaluated in vitro to control Fusarium wilt disease in Vicia faba using the spraying method under greenhouse conditions, and the results showed marked differences in virulence between the control and treatment plants, indicating the biocontrol efficacy of this actinomycete. A promising plant-growth promoting (PGP) ability in seed germination and seedling growth of V. faba was also recorded in vitro for the CFF, which displayed PGP traits of phosphate solubilization (48 mg/100 ml) as well as production of indole acetic acid (34 ㎍/ml) and ammonia (20 ㎍/ml). This study provided scientific validation that the new rhizobacterium Nocardiopsis alba strain BH35 could be further utilized in bioformulation and possesses biocontrol and plant growth-promoting capabilities.

Isolation of Bacillus sp. SHL-3 from the Dry Soil and Evaluation of Plant Growth Promoting Ability

  • Hong, Sun Hwa;Kim, Ji Seul;Sim, Jun Gyu;Lee, Eun Young
    • 한국토양비료학회지
    • /
    • 제48권1호
    • /
    • pp.36-43
    • /
    • 2015
  • Excess use of chemical fertilizer causes soil acidification and accumulation of salt, and thus might bring to desertification of soil. To overcome this problem, it needs limited usage of chemical fertilizer and increased usage of natural fertilizer as an alternative. In this study, dry soil-borne Bacillus sp. SHL-3, which was isolated from arid and barren soil, with plant growth promoting activity was isolated for identification and to determine optimal culture condition. A bacterial strain SHL-3 had the IAA productivity ($5.16{\pm}0.10mg\;L^{-1}$), ACC deaminase activity ($0.36{\pm}0.09$ at 51 hours) and siderophore synthesis. It was identified as genus Bacillus sp.. Also, optimal culture condition of SHL-3 were $20^{\circ}C$ and pH 7 in LB medium. Bacillus sp. SHL-3 had up to 4% salt tolerance in the medium. We evaluated the plant growth promotion ability of SHL-3 using yam (Dioscorea japonica Thunb.). As a result, Bacillus sp. SHL-3 was effective on the increase of the shoot length (202.4% increase for 91 days). These results indicate that Bacillus sp. SHL-3 can serve as a promising microbial resource for the biofertilizers of soil.

Application of Rhizobacteria for Plant Growth Promotion Effect and Biocontrol of Anthracnose Caused by Colletotrichum acutatum on Pepper

  • Lamsal, Kabir;Kim, Sang Woo;Kim, Yun Seok;Lee, Youn Su
    • Mycobiology
    • /
    • 제40권4호
    • /
    • pp.244-251
    • /
    • 2012
  • In vitro and greenhouse screening of seven rhizobacterial isolates, AB05, AB10, AB11, AB12, AB14, AB15 and AB17, was conducted to investigate the plant growth promoting activities and inhibition against anthracnose caused by Colletotrichum acutatum in pepper. According to identification based on 16S rDNA sequencing, the majority of the isolates are members of Bacillus and a single isolate belongs to the genus Paenibacillus. All seven bacterial isolates were capable of inhibiting C. acutatum to various degrees. The results primarily showed that antibiotic substances produced by the selected bacteria were effective and resulted in strong antifungal activity against the fungi. However, isolate AB15 was the most effective bacterial strain, with the potential to suppress more than 50% mycelial growth of C. acutatum in vitro. Moreover, antibiotics from Paenibacillus polymyxa (AB15) and volatile compounds from Bacillus subtilis (AB14) exerted efficient antagonistic activity against the pathogens in a dual culture assay. In vivo suppression activity of selected bacteria was also analyzed in a greenhouse with the reference to their prominent in vitro antagonism efficacy. Induced systemic resistance in pepper against C. acutatum was also observed under greenhouse conditions. Where, isolate AB15 was found to be the most effective bacterial strain at suppressing pepper anthracnose under greenhouse conditions. Moreover, four isolates, AB10, AB12, AB15, and AB17, were identified as the most effective growth promoting bacteria under greenhouse conditions, with AB17 inducing the greatest enhancement of pepper growth.

Effect of Azospirillum brasilense and Methylobacterium oryzae Inoculation on Growth of Red Pepper (Capsicum annuum L.)

  • Chung, Jong-Bae;Sa, Tong-Min
    • 한국토양비료학회지
    • /
    • 제45권1호
    • /
    • pp.59-65
    • /
    • 2012
  • Plant growth-promoting effects of rhizobacterial inoculation obtained in pot experiments cannot always be dependably reproduced in fields. In this study, we investigated the effect of inoculation with Azospirillum brasilense and Methylobacterium oryzae, which have displayed growth promoting effects in several pot experiments, on growth and fruit yield of red pepper under field condition in a plastic-film house. Four rows spaced 90 cm apart were prepared after application of compost ($10Mg\;ha^{-1}$), and red pepper seedlings (Capsicum annum L., Nocgwang) were transplanted in each row with 40-cm space. Experimental treatments were consisted of A. brasilense CW903 inoculation, M. oryzae CBMB20 inoculation, and uninoculated control. Twelve plots, 10 plants per plot, were allotted to the three treatments with four replicates in a completely randomized design. At the time of transplanting, 50 mL of each inoculum ($1{\times}10^8cells\;mL^{-1}$) was introduced into root zone soil of each plant, and re-inoculated at 7 and 14 days after transplant. Plant growth and fruit yield were measured during the experiment. Both A. brasilense CW903 and M. oryzae CBMB20 could not promote growth of red pepper plants. All growth parameters measured were not significantly different among treatments. There were large variations in fruit yield recorded on plot basis, and no statistically significant differences were found among treatments. The failure to demonstrate the expected plant growth promoting effect of the inoculants is possibly due to various environmental factors, including weather and soil characteristics, reducing the possibility to express the potential of the inoculated bacterial strains.

Microcosm Study for Revegetation of Barren Land with Wild Plants by Some Plant Growth-Promoting Rhizobacteria

  • Ahn, Tae-Seok;Ka, Jong-Ok;Lee, Geon-Hyoung;Song, Hong-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.52-57
    • /
    • 2007
  • Growth promotion of wild plants by some plant growth-promoting rhizobacteria (PGPR) was examined in the microcosms composed of soils collected separately from a grass-covered site and a nongrass-covered site in a lakeside barren area at Lake Paro, Korea. After sowing the seeds of eight kinds of wild plants and inoculation of several strains of PGPR, the total bacterial number and microbial activity were measured during 5 months of study period, and the plant biomasses grown were compared at the end of the study. Acridine orange direct counts in the inoculated microcosms, $1.3-9.8{\times}10^9\;cells{\cdot}g\;soil^{-1}$ in the soil from the grass-covered area and $0.9-7.2{\times}10^9\;cells{\cdot}g\;soil^{-1}$ in the soil from the nongrass-covered site, were almost twice higher than those in the uninoculated microcosms. The number of Pseudomonas sp., well-known bacteria as PGPR, and the soil dehydrogenase activity were also higher in the inoculated soils than the uninoculated soils. The first germination of sowed seeds in the inoculated microcosm was 5 days earlier than the uninoculated microcosm. Average lengths of all plants grown during the study period were 26% and 29% longer in the inoculated microcosms starting with the grass-covered soil and the nongrass-covered soil, respectively, compared with those in the uninoculated microcosms. Dry weights of whole plants grown were 67-82% higher in the inoculated microcosms than the uninoculated microcosms. Microbial population and activity and growth promoting effect by PGPR were all higher in the soils collected from the grass-covered area than in the nongrass-covered area. The growth enhancement of wild plants seemed to occur by the activities of inoculated microorganisms, and this capability of PGPR may be utilized for rapid revegetation of some barren lands.