• Title/Summary/Keyword: plant fibers

Search Result 110, Processing Time 0.02 seconds

Physicochemical Properties of Dietary Fibers (식이섬유의 물리화학적 특성)

  • 황재관
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.4
    • /
    • pp.715-719
    • /
    • 1996
  • Dietary fibers consist mostly of complex carbohydrates such as cellulose, hemicelluloses and pectins, and also included are carbohydrate-based gums or hydrocolloids exampled as alginate, carrageenan, galactomannan xanthan, etc. Due to structural diversity, dietary fibers can be classified by various ways i.e., source, plant function, solubility, charge and topology. Understanding on the plant cell wall structure is of primary importance, since physicochemical properties of dietary fibers are dependent on the existence patterns in the cell wall. Depending on the four distinct observational dimensions, the physical parameters of dietary fibers were discussed in terms of raw sources, bulky & complex plant cell wall materials, individually separated hydrocolloid materials and specifically designed materials. Each existence state possesses the distinct physical parameters governing a variety of physiological properties of dietary fibers.

  • PDF

The Properties of Plant Fibers -Kuzu Vine, Indian Mallow, Mulberry Paper, Yucca, New Zealand Hemp, and Corn Fibers- (식물 섬유 특성에 관한 연구 -어저귀, 칡, 닥, 실유카, 신서란, 옥수수를 중심으로-)

  • Bae, Hyun-Young;Lee, Hye-Ja;Yoo, Hye-Ja;Han, Young-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.4
    • /
    • pp.598-607
    • /
    • 2008
  • Bast fibers were applied for various usages from fabrics to household care products long time ago. In this study, we investigated the physical characteristrus of water retted & chemically rotted fibers of Yucca, New Zealand hemp, Corn, Kuzu vine, Indian mallow, and Mulberry paper that have been harvested by domestic cultivation. Water retting is more effective than chemical rotting for six kinds of plant fibers. When all fibers were rotted chemically with 1% sodium hydroxide, only Kuzu vine and Indian mallow were retted. Indian mallow, Yucca, New Zealand hemp, and Com fibers have higher tensile strength than any other fibers. The crystallinity of Kuzu vine, Indian mallow, Yucca, New Zealand hemp, and Corn was as low as 60% but Yucca, New Zealand hemp were flexible. Yucca had fewer lumina whereas New Zealand hemp more lumina in cross sectional shape. Especially com fibers have a structure like sponge, and Indian mallow had a net shape. The longitudinal section of New Zealand hemp showed smooth and long shape. Mulberry paper was proved to be short and thin, which is quite appropriate for making paper. In this study, we found that plant fibers for living material could be used for cloth materials.

Cell Wall Structure of Various Tropical Plant Waste Fibers

  • Abdul Khalil, H.P.S.;Siti Alwani, M.;Mohd Omar, A.K.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.9-15
    • /
    • 2007
  • A comparative study of the structure and organization of the primary and secondary walls in different types of tropical plant waste fibers was carried out using transmission electron microscopy (TEM). The thickness of each layer was also measured using Image Analyzer. TEM micrographs haveconfirmed that cell wall structure of all six types of tropical plant waste fibers (empty fruit bunch, oil palm frond, oil palm trunk, coir, banana stem and pineapple leaf) has the same ultrastructure with wood fibre. The fibers consisted of middle lamella, primary and thick secondary wall with different thickness for different types of fibers. The secondary wall was differentiated into a $S_1$ layer, a unique multi-lamellae $S_2$ layer, and $S_3$ layer.

Effect of Inherent Anatomy of Plant Fibers on the Morphology of Carbon Synthesized from Them and Their Hydrogen Absorption Capacity

  • Sharon, Madhuri;Sharon, Maheshwar
    • Carbon letters
    • /
    • v.13 no.3
    • /
    • pp.161-166
    • /
    • 2012
  • Carbon materials were synthesized by pyrolysis from fibers of Corn-straw (Zea mays), Rice-straw (Oryza sativa), Jute-straw (Corchorus capsularis) Bamboo (Bombax bambusa), Bagass (Saccharum officinarum), Cotton (Bombax malabaricum), and Coconut (Cocos nucifera); these materials were characterized by scanning electron microscope, X-ray diffraction (XRD), and Raman spectra. All carbon materials are micro sized with large pores or channel like morphology. The unique complex spongy, porous and channel like structure of Carbon shows a lot of similarity with the original anatomy of the plant fibers used as precursor. Waxy contents like tyloses and pits present on fiber tracheids that were seen in the inherent anatomy disappear after pyrolysis and only the carbon skeleton remained; XRD analysis shows that carbon shows the development of a (002) plane, with the exception of carbon obtained from bamboo, which shows a very crystalline character. Raman studies of all carbon materials showed the presence of G- and D-bands of almost equal intensities, suggesting the presence of graphitic carbon as well as a disordered graphitic structure. Carbon materials possessing lesser density, larger surface area, more graphitic with less of an $sp^3$ carbon contribution, and having pore sizes around $10{\mu}m$ favor hydrogen adsorption. Carbon materials synthesized from bagass meet these requirements most effectively, followed by cotton fiber, which was more effective than the carbon synthesized from the other plant fibers.

Manufacture of Oriental Painting Paper (Hwaseonji) Using Various Kinds of Plant Fibers (다양한 섬유재료를 이용한 화선지의 제조와 그 특성)

  • 문성필;최영재;강석근
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.3
    • /
    • pp.79-84
    • /
    • 2003
  • Oriental painting paper (Hwaseonji) was prepared from various kinds of plant fibers and its physical properties were investigated. The fibers used were classified into three different length of fibers; long fiber (<1.8 mm), medium fiber (1.4-1.8 mm) and short fiber (>1.4 mm). The fibers were mixed in the ratio of 15% long fiber, 25% medium fiber and 60% short fiber. The Hwaseonji prepared from mixing of the bamboo or rice straw pulp as a short fiber with the long and medium fibers showed excellent physical properties with a high smoothness and uniformity of Chinese ink blot. Mixing with LBKP as a short fiber was resulted in low physical properties, smoothness and wide ink blot. The properties of Hwaseonji, such as ink absorption, roughness and smoothness, may be predicted from the correlation of density with Chinese ink blot and smoothness.

The Properties and Production of Hand-Made Paper Made from Various Plant Fibers (식물섬유 수초지의 제조와 물성에 대한 연구)

  • Lee, Hye-Ja;Lim, Hee-Jung;Bae, Hyun-Young;Mo, Tae-Wha;Yoo, Hye-Ja;Han, Young-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.9
    • /
    • pp.1366-1375
    • /
    • 2008
  • This studies were carried out in order to develope environmentally-friendly fiber materials and substitute resources of Paper mulberry. Various plant fibers such as New Zealand flax, Indian mallow, Kuzu vine and Yucca were used as raw materials of hand-made papers. We rotted these 4 kinds of plant fibers and removed non-cellulose. After rotting, the pulping rate(%) and the length of fibers in pulps were measured. The physical characteristics of papers made of various plants fiber were investigated and the probabilities of practical use were considered. The results were as follow: The non-cellulose contents of plant fibers were $30{\sim}40%$ and those contents must be lower down to 8% to be able to manufacture the hand made papers. The lignin in pulps were removed almost and the hemicellulose were partially removed to reach up to appropriate level of the pulp rates and fiber lengths. The more hemicellulose removed, the finer fiber thickness were and rapidly the lower Hanji tensile strength were. But the tear strength of these plants of hand-made papers do not decreased so much as tensile strength. So the property of 4 types of plant fibers might be of great advantages to make hand-made papers. Both tensile and tear strengths of Hanji of New Zealand flax, Indian mallow, Kuzu vine and Yucca were higher than Paper mulberry hand-made paper. When 30% of mulberry paper were mixed, the mixing effect showed maximum. Because of the functions of all plant fiber hand-made papers showed better than those of Paper mulberry hand-made paper, 4 types of plant fibers could be substitute Paper mulberry.

Development of Modified Printing Hanji Using Alternative Plant Fibers (II) - Printability of Printing Hanji Made of Alternative Plant Fibers - (대체 식물 자원을 이용한 인쇄용 개량한지의 개발 연구(제 2보) - 대체 식물 자원 섬유를 이용한 개량 한지의 인쇄 특성 연구 -)

  • Lee, Ji-Young;Seo, Jeong-Min;Kim, Chul-Hwan;Eom, Tae-Jin;Park, Hyun-Jin;Kim, Sung-Ho;Kim, Gyeong-Chul
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.2
    • /
    • pp.16-23
    • /
    • 2011
  • This study was carried out to develop the printing Hanji made of mixed raw materials with mulberry bast fibers and alternative plant fibers such as bamboo, soybean stalks, pepper stalk and sea tangle. All alternative plant fibers were produced by the kraft pulping method with 2 stages of bleaching, and used to prepare the modified traditional paper, Hanji for printing purpose. Printing quality of modified Hanji was analyzed by measuring area and Formcircle of halftones and comparing a letter shape printed on paper. The Hanji made of 60% of mulberry bast fibers and 40% of bamboo bleached kraft pulp showed the best printing quality with the smallest area and the largest Formcircle in all modified Hanji. Through the image analysis of form circles of the letters printed on the Hanji, it could also be confirmed that the best printability of the modified Hanji was made using bamboo fibers.

The Properties of Plant Fiber and Polyester Blended Nonwoven Fabrics (식물성 섬유와 폴리에스테르 섬유의 혼합 부직포 제조 및 특성 -어저귀, 칡섬유를 중심으로-)

  • Lee, Hye-Ja;Kim, Nam-Eun;Yoo, Hye-Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.11
    • /
    • pp.1696-1706
    • /
    • 2009
  • Nonwoven fabrics have been widely used in various fields that include household, industrial, agricultural, medical goods, especially in the automobile industry. In this study, eco-friendly fiber materials were developed and investigated as a substitute material for polyester fibers in nonwovens. To make plant fiber bundles, stems of Indian mallow (IM), and Kuzu vine (KV) were retted; in addition, the non-cellulose component was partially removed. Plant fiber bundles and polyester fibers (P) were blended and needle punched to produce nonwovens. Five kinds of nonwovens were manufactured: P100 (Polyester 100%), IM10 (IM 10% and Polyester 90%), IM20 (IM 20% and Polyester 80%), KV10 (KV 10% and Polyester 90%), and KV20 (KV 20% and Polyester 80%). The color values, surface appearance, tensile strength, elongation, tear strength, abrasion strength, flexstiffness, moisture regain, water or oil absorbency, and static electricity of manufactured nonwovens are investigated. As the blended ratios of IM or KV increased, the brightness of nonwovens decreased compared to that of polyester 100%. Tensile strength, tear strength, abrasion strength, and flexstiffness of IM10 as well as KV10 were higher than those of P100, IM20, and KV20, resulting from the influence of the structure and properties of nonwoven fibers. Moisture regain and water or oil absorbency increased, while static electricity decreased in proportion to the amount of plant fibers. IM or KV and polyester blended nonwovens showed improved properties over P100 that could be substituted for P100 as a novel material for textiles.

Characterization of Worker Exposure to Airborne Asbestos in Asbestos Industry (석면취급 사업장 근로자의 석면폭로 특성에 관한 연구)

  • Paik, Nam Won;Lee, Young Hwan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.1 no.2
    • /
    • pp.144-153
    • /
    • 1991
  • This study was conducted to evaluate worker exposure to airborne asbestos fibers by industry, and to evaluate polarized-light microscopy for determining airborne asbestos fibers. A total of 11 plants including asbestos textile, brake-lining manufacturing, slate manufacturing, and automobile maintenance shops were investigated. Rsults of the study are summarized as follows. 1. Worker exposure levels to airborne asbestos fibers were the highest in asbestos textile industry, followed by brake-lining manufacturing, slate manufacturing, and automobile maintenance shops, in order. In asbestos textile industry, large variation of asbestos levels was found by plants. The worst plant indicated airborne fiber concentrations in excess of 10 fibers/cc, however, the best plant showed concentrations within 0.50 fibers/cc. 2. Characterization of airborne fibers by industry indicated that fibers from asbestos textile industry were the longest with the largest aspect ratio. Fibers from automobile maintenance shops were the shortest with the smallest aspect ratio. Based on characteristics of fibers and the highest levels of concentrations, it is concluded that workers in the asbestos textile industry are exposed to the highest risk of producing asbestosis, lung cancer, and mesothelioma. 3. Result s obtained using polarized-light microscopy were $43.7{\pm}12.3%$ of the results obtained using phase contrast microscopy. This may be resulted from the worse resolution of polarized-light microscopy than that of phase contrast microscopy. Based on the results, it is recommended that polarized-light microscopy be used for mainly bulk sample analyses and further study be performed to improve the method for determining airborne samples. However, polarized-light microscopy can be used for determining thick fibers.

  • PDF

Surface Morphologies and Internal Fine Structures of Bast Fibers

  • Wang H. M.;Wang X.
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.6-12
    • /
    • 2005
  • Fiber surface morphologies and associated internal structures are closely related to its properties. Unlike other fibers including cotton, bast fibers possess transverse nodes and fissures in cross-sectional and longitudinal directions. Their morphologies and associated internal structures were anatomically examined under the scanning electron microscope. The results showed that the morphologies of the nodes and the fissures of bast fibers varied depending on the construction of the inner fibril cellular layers. The transverse nodes and fissures were formed by the folding and spiralling of the cellular layers during plant growth. The dimensions of nodes and fissures were determined by the dislocations of the cellular layers. There were also many longitudinal fissures in bast fibers. Some deep longitudinal fissures even opened the fiber lumen for a short way along the fiber. In addition, the lumen channel of the bast fibers could be disturbed or disrupted by the nodes and the spi­rals of the internal cellular layers. The existence of the transverse nodes and fissures in the bast fibers could degrade the fiber mechanical properties, whereas the longitudinal fissures may contribute to the very rapid moisture absorption and desorption.