• Title/Summary/Keyword: plant engineering

Search Result 9,449, Processing Time 0.04 seconds

Comparison of the Fertility of Stream Waters Depending on the Drainage Systems in the Lake Shihwa Watershed, Korea (시화호 유역에서 배수시스템별 하천수의 비옥도 비교)

  • Shin, Jae-Ki;Kim, Dong-Sup;Kang, Chang-Keun;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.381-388
    • /
    • 2003
  • The fertility of stream water in major streams of the Lake Shihwa Watershed was compared using water analyses and algal growth potential test (AGPT) in typical drought seasons from December 2001 to April 2002, The water quality varied considerably depending on streams. These streams were very rich in inorganic nutrients that the nutrient levels and characteristics of each stream could be easily determined. Through AGPT, 63.6% of growth was observed in the average values of each stream, with non-growth accounting for 36.4%. AGPT results showed that 40.9% of the 22 stations were in hypertrophic condition and 54.5% in eutrophic condition. AGPT values were significantly correlated with TIN, $NH_4$, and SRP (p <0.001); compared to other nutrients, however, they were more related to SRP and $NH_4$. Moreover, the values increased with high concentration of N and P and low N/P ratios. Nonetheless, the values were more dependent on P concentration than N concentration. This suggests that the effect of P on the water quality of lake situated in downstream may serve as a potential indicator of phytoplankton development. Depending on the drainage pattern of streams, the wastewaters of wastewater treatment plant (WwTP) and untreated wastewater (UTW) were found to have 53.4% and 46.6%, respevtively, of TIN, 51.9% and 48.1% of $NH_4$, 62.9% and 37.1% of $NO_3$, 62.6% and 37.4% of SRP, and 44.1% and 55.9% of SRSi. The AGPT value was 51.1% in WwTP wastewater and 48.9% in UTW wastewater, the concentration of WwTP wastewater was slightly higher. For untreated wastewaters flowing into the constructed wetland and into the lake, TIN accounts for 43.0% and 57.0%, respectively, of nitrogen components, $NH_4$ 44.4% and 55.6%, $NO_3$ 39.6% and 60.4%, SRP 53.5% and 46.5%, and SRSi 52.3% and 47.7%, respectively. The AGPT value was 58.0% in the constructed wetland and 42.0% in Lake Shihwa; the concentration in streams flowing into the wetland was slightly higher. Therefore, Persistent and large development of phytoplankton in Lake Shihwa cannot be prevented unless a measure tophytoplankton control is implemented. This is because the concentration of nutrients in specific streams flowing into the lake is very high, even though the inflow of water is low.

A Study on the Vent Path Through the Pressurizer Manway and Steam Generator Manway under Loss of Residual Heat Removal System During Mid-loop Operation in PWR (가압경수로의 부분충수 운전중 잔열제거계통 기능 상실사고시 가압기와 증기발생기 Manway 유출유로를 이용한 사고완화에 관한 연구)

  • Y. J. Chung;Kim, W. S.;K. S. Ha;W. P. Chang;K. J. Yoo
    • Nuclear Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.137-149
    • /
    • 1996
  • The present study is to analyze an integral test, BETHSY test 6.9c, which represent loss of RURS accident under mid-loop operation. Both the pressurizer manway and the steam generator outlet plenum manway are opened as vent paths in order to prevent the system from pressurization by removing the steam generated in the core. The main purposes are to gain insights into the physical phenomena and identify sensitive parameters. Assessment of capability of CATHARE2 prediction can be established the effective recovery procedures using the code in an actual plant. Most of important physical phenomena in the experiment could be predicted by the CATHARE2 code. The peak pressure in the upper plenum is predicted higher than experimental value by 7 kPa since the differential pressure between the pressurizer and the surge line is overestimated. The timing of core uncovery is delayed by 500 seconds mainly due to discrepancy in the core void distribution. It is demonstrated that openings of the pressurizer manwey and the steam generator manway can prevent the core uncovery using only gravity feed injection. Although some disagreements are found in the detailed phenomena, the code prediction is considered reasonable for the overall system behaviors.

  • PDF

Out-of-Pile Test for Yielding Behavior of PWR Fuel Cladding Material (노외 실험을 통한 가압경수형 핵연료 피복재의 항복거동연구)

  • Yi, Jae-Kyung;Lee, Byong-Whi
    • Nuclear Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.22-33
    • /
    • 1987
  • The confirmed integrity of nuclear fuel cladding materials is an important object during steady state and transient operations at nuclear power plant. In this context, the clad material yielding behavior is especially important because of pellet-clad gap expansion. During the steep power excursion, the in-pile irradiation behavior differences between uranium-dioxide fuel pellet and zircaloy clad induce the contact pressure between them. If this pressure reaches the zircaloy clad yield pressure, the zircaloy clad will be plastically deformed. After the reactor power resumed to normal state, this plastic permanent expansion of clad tube give rise to the pellet-clad gap expansion. In this paper, the simple mandrel expansion test method which utilizes thermal expansion difference between copper mandrel and zircaloy tube was adopted to simulate this phenomenon. That is, copper mandrel which has approximately three times of thermal expansion coefficient of zircaloy-4 (PWR fuel cladding material) were used in this experiment at the temperature range from 400C to 700C. The measured plastic expansion of zircaloy outer radius and derived mathematical relations give the yield pressure, yield stress of zircaloy-4 clad at the various clad wall temperatures, the activation energy of zircaloy tube yielding, and pellet-clad gap expansion. The obtained results are in good agreement with previous experimental results. The mathematical analysis and simple test method prove to be a reliable and simple technique to assess the yielding behavior and gap expansion measurement between zircaloy-4 tube and uranium-dioxide fuel pellet under biaxial stress conditions.

  • PDF

TERRAPOWER, LLC TRAVELING WAVE REACTOR DEVELOPMENT PROGRAM OVERVIEW

  • Hejzlar, Pavel;Petroski, Robert;Cheatham, Jesse;Touran, Nick;Cohen, Michael;Truong, Bao;Latta, Ryan;Werner, Mark;Burke, Tom;Tandy, Jay;Garrett, Mike;Johnson, Brian;Ellis, Tyler;Mcwhirter, Jon;Odedra, Ash;Schweiger, Pat;Adkisson, Doug;Gilleland, John
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.731-744
    • /
    • 2013
  • Energy security is a topic of high importance to many countries throughout the world. Countries with access to vast energy supplies enjoy all of the economic and political benefits that come with controlling a highly sought after commodity. Given the desire to diversify away from fossil fuels due to rising environmental and economic concerns, there are limited technology options available for baseload electricity generation. Further complicating this issue is the desire for energy sources to be sustainable and globally scalable in addition to being economic and environmentally benign. Nuclear energy in its current form meets many but not all of these attributes. In order to address these limitations, TerraPower, LLC has developed the Traveling Wave Reactor (TWR) which is a near-term deployable and truly sustainable energy solution that is globally scalable for the indefinite future. The fast neutron spectrum allows up to a ~30-fold gain in fuel utilization efficiency when compared to conventional light water reactors utilizing enriched fuel. When compared to other fast reactors, TWRs represent the lowest cost alternative to enjoy the energy security benefits of an advanced nuclear fuel cycle without the associated proliferation concerns of chemical reprocessing. On a country level, this represents a significant savings in the energy generation infrastructure for several reasons 1) no reprocessing plants need to be built, 2) a reduced number of enrichment plants need to be built, 3) reduced waste production results in a lower repository capacity requirement and reduced waste transportation costs and 4) less uranium ore needs to be mined or purchased since natural or depleted uranium can be used directly as fuel. With advanced technological development and added cost, TWRs are also capable of reusing both their own used fuel and used fuel from LWRs, thereby eliminating the need for enrichment in the longer term and reducing the overall societal waste burden. This paper describes the origins and current status of the TWR development program at TerraPower, LLC. Some of the areas covered include the key TWR design challenges and brief descriptions of TWR-Prototype (TWR-P) reactor. Selected information on the TWR-P core designs are also provided in the areas of neutronic, thermal hydraulic and fuel performance. The TWR-P plant design is also described in such areas as; system design descriptions, mechanical design, and safety performance.

The analysis of the cultivation status of the upland crops in the paddy field using unmanned aerial vehicle

  • Park, Jin-Ki;Kwak, Kang-Su;Park, Jong-Hwa
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.352-352
    • /
    • 2017
  • Recently, the South Korean government encourages the cultivation of upland crops in the paddy field to maintain an adequate level of rice production and then to balance the demand and supply of rice. This is mainly because the rice consumption per capita per year has continued to decline from 135 kg in 1979 to 61.9 kg in 2016, although the rice production was relatively stable. As a result, the rice overproduction became a big social problem. As a part of that, various upland crops such as soybean, maize, minor cereals and forage crops are planted in the paddy field 10 years ago. The cultivation of these crops may settle the problem of short supply and mass import of the crops to some extent. However, a systematic remote observation of upland crops in the paddy field is very scarce. This study investigated the cultivation status of upland crops and any changes of crop harvesting in the paddy field by using an unmanned aerial vehicle (UAV). Also, we analyzed the kind of upland crops and cultivation area in the paddy field by utilizing time series observation images. A fixed wing UAV is used for the investigation. This is because it is easy to use the flight operation and to control flight management software, and it can automatically cope with various emergency states such as a strong wind and battery discharge. The material of UAV is expanded polypropylene, which has an advantage of less equipment damage and risk during takeoff and landing. We acquired observed images in Buljeong-myeon, Goesan-gun, Chungcheongbuk-do, South Korea by using fixed wing UAV in 2015 and 2016. The total investigated area reaches 6,045 ha, and among them the agricultural area was 1,377 ha. For the next step, we created an orthoimage from all images taken using Pix 4D mapper program. According to the results of image analyses in 2015, the paddy field covered total 577 ha (75.9%) with crop plant. The cultivation area of beans, ginseng, maize, tobacco and peach was 256 ha (36.6%), 63 ha (9.2%), 37 ha (5.4%), 31 ha (4.5%) and 27 ha (3.8), respectively. And in 2016, the total covered area was 586 ha (77.1%), and it was comprised of 253 ha (35.5%), 88 ha (12.3%), 29 ha (4.1%), 22 ha (3.1%) and 32 ha (4.5%) in the same order. In this study, we focused on identifying the paddy field which was converted to the cultivation of upland crops by using UAV. And, it has been indicated that the cultivation area of rice decreased from 141 ha in 2015 to 127 ha in 2016, although that of ginseng increased by 25 ha. As a result, it is expected that a lot of paddy field could be replaced by high-income crops such as ginseng and fruit tree (peach) instead of relative low-income rice. More specific and widespread research on the remote sensing in the paddy field needs to be done.

  • PDF

Modeling the effects of excess water on soybean growth in converted paddy field in Japan. 2. modeling the effect of excess water on the leaf area development and biomass production of soybean

  • Nakano, Satoshi;Kato, Chihiro;Purcell, Larry C.;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.308-308
    • /
    • 2017
  • The low and unstable yield of soybean has been a major problem in Japan. Excess soil moisture conditions are one of the major factors to restrict soybean productivity. More than 80 % of soybean crops are cultivated in converted paddy fields which often have poor drainage. In central and eastern regions of Japan, the early vegetative growth of soybean tends to be restricted by the flooding damage because the early growth period is overlapped with the rainy season. Field observation shows that induced excess water stress in early vegetative stage reduces dry matter production by decreasing intercepted radiation by leaf and radiation use efficiency (RUE) (Bajgain et al., 2015). Therefore, it is necessary to evaluate the responses of soybean growth for excess water conditions to assess these effects on soybean productions. In this study, we aim to modify the soybean crop model (Sinclair et al., 2003) by adding the components of the restriction of leaf area development and RUE for adaptable to excess water conditions. This model was consist of five components, phenological model, leaf area development model, dry matter production model, plant nitrogen model and soil water balance model. The model structures and parameters were estimated from the data obtained from the field experiment in Tsukuba. The excess water effects on the leaf area development were modeled with consideration of decrease of blanch emergence and individual leaf expansion as a function of temperature and ground water level from pot experiments. The nitrogen fixation and nitrogen absorption from soil were assumed to be inhibited by excess water stress and the RUE was assumed to be decreasing according to the decline of leaf nitrogen concentration. The results of the modified model were better agreement with the field observations of the induced excess water stress in paddy field. By coupling the crop model and the ground water level model, it may be possible to assess the impact of excess water conditions for soybean production quantitatively.

  • PDF

Isolation and Identification of Antioxidants from Methanol Extract of Sword Bean (Canavalia gladiata) (작두콩의 메탄올 추출물로부터 항산화 활성 화합물의 분리 및 동정)

  • Kim, Jong-Pil;Lee, Hyang-Hee;Moon, Jae-Hak;Ha, Dong-Ryong;Kim, Eun-Sun;Kim, Jin-Hwan;Seo, Kye-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.777-784
    • /
    • 2013
  • The ethyl acetate (EtOAc) layer of Canavalia gladiata (sword bean) methanol extracts showed higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity than other layers. Four phenolic compounds were isolated from the EtOAc layer by silica gel column chromatography and prep-HPLC using a guided DPPH radical-scavenging assay. The isolated compounds were identified as methyl gallate (1), gallic acid (2), 1,6-di-O-galloyl ${\beta}$-$\small{D}$-glucopyranoside (3), and 1,4,6-tri-O-galloyl ${\beta}$-$\small{D}$-glucopyranoside (4) based on MS and NMR analyses. Among the four compounds, no. 4 was isolated from this plant for the first time. Their DPPH radical-scavenging activities based on $SC_{50}$ decreased in the following order: 4 (6.9 ${\mu}M$)>3 (8.3 ${\mu}M$)>2 (10.0 ${\mu}M$)>1 (10.3 ${\mu}M$).

Effect of Phosphorus Removal by Oyster Shell on Longevity of Constructed Wetlands (굴패각에 의한 인 처리가 인공습지의 수명에 미치는 영향)

  • Kim, Seong-Heon;Kim, Hong-Chul;Park, Jong-Hwan;Ryu, Seong-Ki;Kang, Se-Won;Cho, Ju-Sik;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.1
    • /
    • pp.66-72
    • /
    • 2018
  • BACKGROUND: Constructed wetlands are low-cost alternatives for treating domestics sewage. However, previous study has reported that the removal of phosphorus in constructed wetlands was limited. Therefore, a new alternative was needed to extend the life of the constructed wetlands. The purpose of this study was to evaluate the effect of total phosphorus removal by oyster shell on longevity of constructed wetlands for treating domestic sewage. METHODS AND RESULTS: The changes of total phosphorus concentration and treatment efficiency in two constructed wetlands (CWs) classified as system A (coarse sand 100%) and system B (coarse sand 90%+oyster shell 10%) were investigated for 6 years. The actual saturation time of total phosphorus in the systems A and B was estimated to be longer than that of theoretical saturation by adsorption isotherm experiment. In particular, the saturation pattern of phosphorus in system A was maintained at a certain concentration level in the initial stage of operation, and finally saturation was reached as the saturation gradually progressed from the breaking point. In system B, the saturation period of phosphorus was prolonged as compared with system A due to the addition of oyster shells. CONCLUSION: Our results suggest that the longevity of the constructed wetlands can be extended due to the phosphorus saturation by adding the oyster shells to the coarse sands in constructed wetlands.

Physical, Morphological, and Chemical Analysis of Fly Ash Generated from the Coal Fired Power Plant (석탄 화력발전소에서 발생되는 석탄회 특성과 형성 분석에 관한 연구)

  • 이정언;이재근
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.146-156
    • /
    • 1998
  • Fly ash produced in coal combustion is a fine-grained material consisting mostly of spherical, glassy, and porous particles. A physical, morphological, and chemical characteristic of fly ash has been analyzed. This study may contribute to the data base of domestic fly ash, the improvement of combustion efficiency, ash recycling and ash collection in the electrostatic precipitator. The physical property of fly ash is determined using a particle counter for the measurement of ash size distribution and gravimeter. Morphological characteristic of fly ash is performed using a scanning electron micrograph and an optical microscope. The chemical components of fly ash are determined using an inductively coupled plasma emission spectrometry (ICP). The distribution of fly ash size was ranged from 15 to 25 $\mu$m in mass median diameter. Exposure conditions of flue gas temperature and duration within the combustion zone of the boiler played an important role on the morphological properties of the fly ash such as shape, relative opacity, coloration, cenosphere and plerosphere. The spherical fly ash might be generated at the condition of complete combustion. The size of fly ash was found to be increased the with particle-particle interaction of agglomeration and coagulation. Fly ash consisted of $SiO_2\;Al_2O_3\;and\;Fe_2O_3$ with 85% and carbon with 3~10% of total mass.

  • PDF

Estimation for CDM of Power Generation by using Bio-diesel (바이오 디젤의 발전용 연료화 CDM 평가)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Rhim, Sang-Kyu;Lee, Jung-Bin
    • Journal of Energy Engineering
    • /
    • v.18 no.2
    • /
    • pp.132-135
    • /
    • 2009
  • Development of biofuels like ethanol and biodiesel for commercial uses is a recent phenomenon. However, the growth of ethanol and biodiesel has been impressive during the period 2000-2007yr. Globally, production of biodiesel stands around 8.3 billion liters. Europe leads the world in biodiesel production with 80% share of the global biodiesel production total. Today biodiesel fuels have been in commercial use in many countries and recently the world-wide biodiesel market has experienced considerable growth, which is partly due to various tax concession programs and other financial incentives. In Korea, biodiesel has already been used for transportation fuel, but not used for power generation fuel yet. Korean government has a strategy for renewable energy propagation, especially the goal of power generation amount by renewable energy is 3% of total power production by 2012. This paper focuses on the estimation study for effect of using biodiesel as power generation fuel. The study also has the plan to replace the fuel of thermal power plant, gas turbine and distributed power generation system. As the increase of biodiesel fuel, I look forward to environment-friendly power generation and the strategy of Renewable Portfolio Standards(RPS).