• Title/Summary/Keyword: plant bioreactor

Search Result 176, Processing Time 0.887 seconds

Field Application of a Continuously Aerated Bio-Reactor (CABR) for the Treatment of Swine Wastewater (양돈분뇨처리에 있어서 연속폭기배양조(CABR)의 현장적용연구)

  • Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.1 no.1
    • /
    • pp.55-64
    • /
    • 1995
  • A wastewater purifying system using phototrophic bacterium, Rhodopseudomonas capsulata, is currently in operation in several countries, One of them, is a continuously aerated bioreactor(CABR) system, which treats concentrated swin wasterwater using small amounts of phototrophic bacteria as additive bacterial seeding. Using this plant, total biochemical oxygen demand was decreased to 13%, and most of volatile fatty acids were removed. About 40% of the wastewater(Influx) was evaporated during aerobic digestion for 24h, and 60% of that erupted in a decodorized foam(Efflux). The efflux had enough nutrients, N, P and K kor growing plant, as well as organic matters. When the efflux was applied to Italian ryegrass with high dose, fresh shoot and root weights were significantly greater, and $NO_3-N$ contents of the dried shoot were lower than those of control plant (CDU). These results indicate that the CABR plant is useful for reduction and deodorization of swine wastewater and the efflux from CABR can be used for crop production as an organic fertilizer.

  • PDF

Effects of Plant Growth Regulators, Medium Salt Strength and Nitrogen Ratio on Cell Culture of Gymmema sylvestre (식물생장조절물질, 무기물 농도 및 질소원 비율이 Gymmma sylvestre 세포 배양에 미치는 영향)

  • Lee, Eun-Jung;Han, Eun-Joo;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.105-110
    • /
    • 2006
  • This study was carried out to investigate the effects of plant growth regulators, medium salt strength and nitrogen ratio on cell culture of Gymnema sylvestre. Cell growth was inhibited by 2,4-D higher than 1.0 mg L$^{-1}$, but not by kinetin lower than 0.5 mg L$^{-1}$. Maximal cell growth was obtained at 1.0 mg L$^{-1}$ 2,4-D and 0.1 mg L$^{-1}$ kinetin. Cell growth was greatest at 1x MS medium but high strength of MS medium inhibited cell growth due to low water potential in the medium. In $NH_4^+:NO_3^-$ ratio of 0:60 (i.e. 0.0 mM $^NH_4^+$ and 60.0 mM $NO_3^-$), cells growth was highest but cells were smaller and whiter compared with those in other $NH_4^+:NO_3^-$ ratio. Reduced cell growth was observed with continuous culture. These results suggested that optimal cell culture of G. sylvestre could be achieved with 1x MS medium with 20:40 ratio of $NH_4^+:NO_3^-$ supplemented with 1.0 mg L$^{-1}$ 2,4-D and 0.1 mg L$^{-1}$ kinetin.

A study on ecotoxicity characteristics of public sewage treatment plant process using Daphnia magna (물벼룩을 이용한 공공하수처리시설 공정별 생태독성 특성 연구)

  • Gyeongrok Son;Haram Kim;Sungryong Park;Gwangwoon Cho;Yunhee Kim;Jintae Kim;Misook Goh;Kyoungran Moon;Gwangyeob Seo;Byunghoon Park
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.3
    • /
    • pp.141-153
    • /
    • 2024
  • The purpose of this study is to analyze the correlation between ecotoxicity and water quality items using Daphnia magna in public sewage treatment plant process and to obtain operational data to control ecotoxicity through research on removal efficiency. The average value of ecotoxicity was 1.39 TU in the influent, 1.50 TU in the grit chamber, and 0.84 TU in the primary settling tank and it was found that most organic matters, nitrogen, and phosphorus were removed through biological treatment in the bioreactor. Using Pearson's correlation analysis, the positive correlation was confirmed in the order of ecotoxicity and water quality items TOC, BOD, T-N, NH3-N, SS, EC, and Cu. As a result of conducting a multilinear regression analysis with items representing positive correlation as independent variables, the regression model was found to be statistically significant, and the explanatory power of the regression model was about 81.6%. TOC was found to have a significant effect on ecotoxicity with B=0.009 (p<.001) and Cu with B=16.670 (p<.001), and since the B sign is positive (+), an increase of 1 in TOC increases the value of ecotoxicity by 0.009 and an increase in Cu by 1 increases the value of ecotoxicity by 16.670. TOC (β=0.789, p<.001) and Cu (β=0.209, p<.001) were found to have a significant positive effect on ecotoxicity. TOC and Cu have a great effect on ecotoxicity in the sewage treatment plant process, and it is judged that TOC and Cu should be considered preferentially and controlled in order to efficiently control ecotoxicity.

Microprogation And Environment Conditions Affecting On Growth Of In Vitro And Ex Vitro Of A. Formosanus Hay

  • Ket, Nguyen-Van;Paek, Kee-Yoeup
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2002.11a
    • /
    • pp.29-30
    • /
    • 2002
  • The goal of this research was to develop the effectiveness of in vitro culture method for A. formosanus and study the environment in vitro conditions affecting on growth. The first series of experiments were examined to investigate the response of three different basal media, MS (Murashige and Skoog, 1962), Knudson (KC; Knudson, 1946) and modified hyponex on growth and multiplication during in vitro culture. Multiple shoot proliferation was induced in shoot tip explants on Hyponex (H3) media supplemented with BA (1 mg1$\^$-1/) or TDZ (1-2 mg1$\^$-1/). Addition of activated charcoal (1%) to the TDZ containing medium promoted rapid shoot tip proliferation (11.1 shoots per explant) but the same medium had an opposite effect resulting in poor proliferation in the nodal explants. However, the regenerated shoots had slow growth rate and failed to elongate. This problem was overcome by transferring the shoot clumps to a hormone free H3 media supplemented with 2% sucrose and 0.5% activated charcoal. Using bioreactor culture for scaling up was also shown the best way for multiple shoot induction and growth of this plant. The second series of experiments was studied to investigate the effect of physical environment factors on growth of in vitro plantlets. The Anoectochilus formosanus plantlets were cultured under different air exchange rate (0.1, 0.9, 1.2h$\^$-1/), without sucrose or supplement 20g.1$\^$-1/ (photoautotrophic or photomixotrophic, respectively), and different photosynthesis photon flux (40, 80, 120 ,${\mu}$mol.m$^2$.s$\^$-1/- PPF). Under non-enrichment CO$_2$ treatment, slow growth was observed in photoautotrophical condition as compared with photomixotrophical condition on shoot height, fresh weigh and dry weight parameters; High air exchange (1.2.h-l) was found to be inadequate for plant growth in photomixotrophical condition. On the contrary, under CO$_2$, enrichment treatment, the plant growth parameters were sharply (visibly) improved on photoautotrophic treatments, especially on the treatment with air exchange rate of 0.9.h-1. The growth of plant in photoautotrophic condition was not inferior compared with photomixotrophic, and the best growth of plantlet was observed in treatment with low air exchange rate (0.9.h-1). Raising the PPF level from 80 to 120${\mu}$mol.m$\^$-2/.s$\^$-1/ decreased the plant height, particularly at 120${\mu}$mol.m$\^$-2/.s$\^$-1/ in photoautotrophic condition, fresh weight and dry weight declined noticeably. At the PPF of 120${\mu}$mol.m$\^$-2/,s$\^$-1/, chlorophyll contents lowed compared to those grown under low PPF but time courses of net photosynthesis rate was decreased noticeably. Light quality mainly affected morphological variables, changes of light quality also positively affected biomass production via changes in leaf area, stem elongation, chlorophyll content. Plant biomass was reduced when A. formosanus were grown under red LEDs in the absence of blue wavelengths compare to plants grown under supplemental blue light or under fluorescent light. Stem elongation was observed under red and blue light in the present experiment. Smaller leaf area has found under blue light than with other lighting treatments. Chlorophyll degradation was more pronounced in red and blue light compared with white light or red plus blue light which consequent affected the photosynthetic capacity of the plant. The third series of experiment were studied to investigate the effect of physical environment factors on growth of ex vitro plants including photosynthesis photon flux (PPF), light quality, growing substrates, electrical conductivity (EC) and humidity conditions. In the present experiments, response of plant on PPF and light quality was similar in vitro plants under photosynthesis photon flux 40${\mu}$mol.m,$\^$-2/.s$\^$-1/ and white light or blue plus red lights were the best growth. Substrates testing results were indicated cocopeat or peat moss were good substrates for A. formosanus growth under the greenhouse conditions. In case of A. formosanus plants, EC is generally maintained in the range 0.7 to 1.5 dS.m-1 was shown best results in growth of this plant. Keeping high humidity over 70% under low radiation enhanced growth rate and mass production.

  • PDF

Increasement of Secondary Metabolites and Antioxidative Activity in Panax ginseng Adventitious Root by Methyl Jasmonate (Methyl jasmonate 처리에 의한 인삼 (Panax ginseng C.A. Meyer) 부정근의 이차대사산물 및 항산화활성 증가)

  • Lim Soon;Bae Ki-Hwa;Shin Cha-Gyun;Kim Yoon-Young;Kim Yun-Soo
    • Journal of Plant Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.225-231
    • /
    • 2005
  • This study was initiated to investigate the impacts of methyl jasmonate (MeJA) on adventitious root growth of Panax ginseng, the production of secondary metabolites, such as ginsenosides and phenolic compounds, and antioxidative activity. Among various concentrations of MeJA, $100\;{\mu}M$ MeJA increased the ginsenosides accumulation to 26.6 mg/g dry wt, about 8 times higher than the control in ginseng adventitious roots (GAR). In addition, $50\;{\mu}M$ MeJA increased the accumulation of phenolic compounds to 0.38 mg/g dry wt, about 3 times higher than control in GAR. This MeJA treatment was more effective in conditioned medium (CM) which obtained in bioreactor after 40 days of culture than in fresh medium (FM). Treatment of $100\;{\mu}M$ MeJA in CM increased the accumulation of ginsenosides (1.7 times) and phenolic compounds (1.2 times) more than in FM, respectively. Consequently, these high accumulation of ginsenosides and phenolic compounds by MeJA led to increase the antioxidative activities expressed to the DPPH scavenging activity (over $78.3\%$). The DPPH scavenging activity in control was $45.5\%$.

Anti-inflammatory Effect of the Extract of Gynostemma pentaphyllum cell from Ullengdo Island as Korean Endemic Plant (한국 고유 식물 울릉도 돌외 식물 세포 배양추출물의 항염증 효과)

  • Mok, Bo-Ram;Kim, Soo-Yun;Paek, Seung hye;Jang, Young-su;Shin, Jung U;Moh, Sang Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.745-754
    • /
    • 2021
  • The purpose of this study was to evaluate and verify the effectiveness of sustainable cosmetic raw materials developed from Gynostemma pentaphyllum, a plant native to Ulleungdo, in improving the skin barrier function and treating atopic dermatitis. Cells were derived from adult Gynostemma pentaphyllum plants, and suitable conditions for mass culture of the cells were established in a bioreactor. DNA components and amino acids extracted from this mass culture were identified from the HPLC fraction. In the in vitro efficacy evaluation results, changes in the expression levels of skin barrier-related proteins such as filaggrin (FLG) and Zonula occludens-1 (Zo-1) were insignificant. It was confirmed that the expression levels of the proteins thymic stromal lymphopoietin (TSLP) and interleukin-33 (IL-33) were significantly reduced. These results lead to the conclusion that Gynostemma pentaphyllum cell extracts have significant anti-inflammatory effects and that these extracts can be widely used as sustainable, nature-friendly active material in cosmetics with anti-inflammatory effects and targeted at improving atopic dermatitis.They may find use in anti-aging cosmetic products as well.

Effects of Mixing Performance and Conditioned Medium on hCTLA4Ig Production in Transgenic Rice Cell Suspension Cultures (형질전환 벼 현탁세포 배양에서 혼합효율과 조정배지가 hCTLA4Ig 생산에 미치는 영향)

  • Choi, Hong-Yeol;Park, Jun-Yong;Nam, Hyung-Jin;Gong, Mi-Kyung;Yoo, Ye-Ri;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.30 no.6
    • /
    • pp.307-312
    • /
    • 2015
  • Transgenic rice cells using RAmy3D promoter can provide high productivity, and the production of recombinant protein is induced by sugar starvation. In this system, productivity was reduced during the scale-up processes. To ensure the influences of shear stress and oxygen transfer rate, working volume and mixing performances were investigated under various agitation speeds and working volumes. In addition, inoculation methods including suspended cells and filtered cells were compared. Working volumes and shaking speeds were 300, 450 mL and 80, 120 rpm, respectively. Hydrodynamic environment of each condition was measured numerically like mixing time and $k_La$. Good mixing performance and high shear stress were measured at high agitation speed and low volume. The highest level of hCTLA4Ig was 30.7 mg/L at 120 rpm, 300 mL. When conditioned medium was used for inoculation, increased cell growth was noticed during the day 0~4 and decreased slower than filtered cells. Compared with filtered cells, the maximum hCTLA4Ig level reached 37.8 mg/L at 120 rpm, 300 mL and lower protease activity level was observed. In conclusion mixing performance is critical factor for productivity and conditioned medium can have a positive effect on damaged cells caused by hydrodynamic shear stress.

Influences of Mixing Frequency on the Composting Performance of the Broiler and Dairy Manure Mixtures (퇴비재료의 교반빈도가 육계분과 유우분 혼합물 퇴비화 성능에 미치는 영향)

  • Park K.J.;Bae Y.H.;Hong J.H.;Wi T.W.
    • Journal of Animal Environmental Science
    • /
    • v.12 no.1
    • /
    • pp.41-44
    • /
    • 2006
  • Broiler manure has much nutrient that can be used as the organic fertilizer to enhance the fertility of soil. However, if it is used directly without biodegradation of organic materials and destruction of weed seed and harmful bacteria, it can produce the generation of weed and disease of plant. Composting of manure is a biodegradation of organic materials into inorganic materials and humus. To proceed biodegradation of manure effectively and enhance the composting performance, optimum environmental condition for microbial growing should be maintained. Environmental variables which can influence the growing activity of microbes are moisture content, pH, porosity, C/N of the composting materials and oxygen supply quantity. Oxygen and porosity are usually supplied by aeration or mixing of materials. This study was intended to investigate the effect of mixing frequency on the composting performance. Mixing of composting materials was performed by turning the bioreactor up and down by hand without any mechanical energy. The broiler manure was captured from the greenhouse type broiler ham as the compounds of broiler manure and rice-hulls, which were used as the base materials. To compost the compounds of broiler manure and rice-hulls, dairy manure was mixed to get appropriate characteristics of composting material. Composting temperature over $55^{\circ}C$ for killing pathogen and weed seed was maintained for longer period with increase of mixing frequency.

  • PDF

THE STUDY ON TISSUE CULTURED WILD MOUNTAIN GINSENG(Panax Ginseng C.A. Meyer) ADVENTITIOUS ROOTS EXTRACT AS A COSMETIC INGREDIENT

  • Jung, Eun-Joo;Park, Jong-Wan;Kim, Joong-Hoi;Paek, Kee-Yoeup
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.611-616
    • /
    • 2003
  • Korean ginseng(Panax Ginseng C.A. Meyer) known as a oriental miracle drug is an important medicinal plant. Ginseng has been used for geriatric, tonic, stomachic, and aphrodisiac treatments for thousands years. Also, it is an antibiotic and has therapeutic properties against stress and cancer. Ginseng is widely distributed all over the world. Among them, Korean mountain ginseng has the most valuable effect on pharmaceuticals. The roots of mountain ginseng contained several kinds of ginsenosides that have many active functions for the human body. However, the study of mountain ginseng has a limit because the mountain ginseng is very expensive and rare. So, we artificially cultured mountain ginseng adventitious roots using the bioreactor culture system. We induced callus from original mountain ginseng, directly dug up in mountain and aged about one hundred ten years. Separated adventitious roots were precultured in 500ml conical flasks and then, transferred in 20L bioreactors. The adventitious roots of mountain ginseng were harvested after culturing for 40days, dried and then, extracted with several solvents. In this study, we investigated the whitening effect, anti-wrinkle effect and the safety of tissue cultured adventitious roots extract of mountain ginseng in order to identify the merit as a cosmetic ingredient. Particularly, extract of mountain ginseng adventitious roots showed whitening and anti-wrinkle effects. The inhibitory effect of this extract on the melanogenesis was examined using B-16 melanoma cell. When B-16 melanoma cells were cultured with adventitious root extract, there was a dramatically decrease in melanin contents of 8-16 melanoma cell. And we identified this extract inhibited Dopa auto-oxidation significantly. Also, when transformed mouse fibroblast L929 cells were treated with this extract, there was a significant increase in collagen synthesis. The results show significant inhibited melanization and wrinkle without inhibiting cell viability.

  • PDF

Development of PTFE Membrane Bio-reactor (MBR) for Integrating Wastewater Reclamation and Rainwater Harvesting (PTFE막을 이용한 빗물 중수 통합형 MBR 시스템 개발 및 성능 평가)

  • Lee, Taeseop;Kim, Youngjin;Ham, Sangwoo;Hong, Seungkwan;Park, Byungjoo;Shin, Yongil;Jung, Insik
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.269-276
    • /
    • 2012
  • The surface characteristics and performance of PTFE (polytetrafluoroethylene) hollow fiber membranes have been systematically investigated at lab- and pilot-scale to assess their application to membrane-bioreactor, particularly for integrating wastewater reclamation and rainwater harvesting. The PTFE membrane expressed some surface features, such as hydrophobicity, which might enhance membrane fouling. However, lab-scale performance and cleaning experiments under various conditions demonstrated that the PTFE membrane could produce the desirable water flux with good cleaning efficiency, implying easy operation and maintenance due to superior chemical resistance of PTFE membranes. Most of effluent water qualities were met with Korean standard for discharge and reuse, except color. Color level was further reduced by blending with rainwater at 75:25 ratio. Based on the lab-scale experimental results, the pilot plant was designed and operated. Pilot operation clearly showed sTable performance with satisfactory water quality, suggesting that PTFE membrane could be applied for decentralized MBR integrated with rainwater use.