• Title/Summary/Keyword: plant biocontrol

Search Result 412, Processing Time 0.03 seconds

Bacillus vallismortis EXTN-1-Mediated Growth Promotion and Disease Suppression in Rice

  • Park Kyung-Seok;Paul Diby;Yeh Wan-Hae
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.278-282
    • /
    • 2006
  • Bacillus vallismortis EXTN-1, a biocontrol agent in cucumber, tomato and potato was tested in rice pathosystem against rice fungal pathogens viz. Magnaporthe grisea, Rhizoctonia solani and Cochliobolus miyabeanus. Apart from increasing the yield in the bacterized plants (11.6-12.6% over control), the study showed that EXTN1 is effective in bringing about disease suppression against all the tested fungal pathogens. EXTN-l treatment resulted in 52.11% reduction in rice blast, 83.02% reduction in sheath blight and 11.54% decrease in brown spot symptoms. As the strain is proven as an inducer for systemic resistance based on PR gene expression in Arabidopsis and tobacco models, it is supposed that a similar mechanism works in rice, bringing about disease suppression. The strain could be used as a potent biocontrol and growth-promoting agent in rice cropping system.

Identification of an Antifungal Chitinase from a Potential Biocontrol Agent, Bacillus cereus 28-9

  • Huang, Chien-Jui;Wang, Tang-Kai;Chung, Shu-Chun;Chen, Chao-Ying
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.82-88
    • /
    • 2005
  • Bacillus cereus 28-9 is a chitinolytic bacterium isolated from lily plant in Taiwan. This bacterium exhibited biocontrol potential on Botrytis leaf blight of lily as demonstrated by a detached leaf assay and dual culture assay. At least two chitinases (ChiCW and ChiCH) were excreted by B. cereus 28-9. The ChiCW-encoding gene was cloned and moderately expressed in Escherichia coli DH5$\alpha$. Near homogenous ChiCW was obtained from the periplasmic fraction of E. coli cells harboring chiCW by a purification procedure. An in vitro assay showed that the purified ChiCW had inhibitory activity on conidial germination of Botrytis elliptica, a major fungal pathogen of lily leaf blight.

Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees

  • Etminani, Faegheh;Harighi, Behrouz
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.208-217
    • /
    • 2018
  • In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees (Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas, Stenotrophomonas, Bacillus, Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea, Bacillus, Pseudomonas, Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity.

Disease Progress of Gray Blight on Tea Plant and Selection of a Biocontrol Agent from Phylloplanes of the Plant (차나무 겹둥근무늬병의 발생소장 및 엽권 길항미생물 선발)

  • Oh Soon-Ok;Kim Gyoung Hee;Lim Kwang-Mi;Hur Jae-Seoun;Koh Young Jin
    • Research in Plant Disease
    • /
    • v.11 no.2
    • /
    • pp.162-166
    • /
    • 2005
  • Disease progress of gray blight of tea (Camellia sinensis O. Kuntze) cv. Yabukita was investigated during the growing season of 2004 at Boseong Tea Experiment Station, Jeonnam Agriculture Research and Extension Service, Boseong, Jeonnam. The disease began to occur from late June and peaked in late July. Antagonistic bacteria against Pestalotiopsis longiseta, the causal pathogen of causing gray blight of tea plants were isolated from phylloplanes of tea plants. An isolate BD0310 which showed the strongest antifungal activity against the pathogen but nonpathogenic to tea plants was selected as a biocontrol agent for the gray blight. The isolate was identified as Bacillus subtilis based on its cultural, morphological, and biochemical characterization and 16S rDNA sequence analysis.

Biocontrol of Maize Diseases by Microorganisms (미생물을 활용한 옥수수병의 생물학적 방제)

  • Jung-Ae, Kim;Jeong-Sup, Song;Min-Hye, Jeong;Sook-Young, Park;Yangseon, Kim
    • Research in Plant Disease
    • /
    • v.28 no.4
    • /
    • pp.195-203
    • /
    • 2022
  • Zea mays, known as maize or corn, is a major staple crop and an important source of energy for humans and animals, thus ensuring global food security. Approximately 9.4% of the loss of total annual corn production is caused by pathogens including fungi, bacteria, and viruses, resulting in economic losses. Although the use of fungicides is one of the most common strategies to control corn diseases, the frequent use of fungicides causes various health problems in humans and animals. In order to overcome this problem, an eco-friendly control strategy has recently emerged as an alternative way. One such eco-friendly control strategy is the use of beneficial microorganisms in the control of plant pathogens. The beneficial microorganisms can control the plant pathogens in various ways, such as spatial competition with plant pathogens, inhibition of fungal or bacterial growth via the production of secondary metabolites or antibiotics, and direct attack to plant pathogens via enzyme activity. Here, we reviewed microorganisms as biocontrol agents against corn diseases.

Combined Application of Pseudomonas fluorescens and Trichoderma viride has an Improved Biocontrol Activity Against Stem Rot in Groundnut

  • Manjula, K.;Kishore, G.Krishna;Girish, A.G.;Singh, S.D.
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.75-80
    • /
    • 2004
  • In an attempt to develop effective biocontrol system for management of stem rot disease in groundnut, 57 bacterial isolates and 13 isolates of Trichoderma spp. were evaluated for their antagonistic activity against Sclerotium rolfsii. The antagonists were selected based on their ability to inhibit the external growth of S. rolfsii from infected groundnut seeds. Four isolates of Pseudomonas fluorescens, GB 4, GB 8, GB 10 and GB 27, and T. viride pq 1 were identified as potent antagonists of S. rolfsii. T. viride pq 1 produced extracellular chitinase and parasitized the mycelium of S. rolfsii. Under controlled environment conditions, P. fluorescens GB 10, GB 27, T. viride pq 1 and the systemic fungicide Thiram(equation omitted) reduced the mortality of S. rolfsii inoculated to groundnut seedlings by 58.0%, 55.9%, 70.0% and 25.9%, respectively compared to control. In vitro growth of P. fluorescens GB 10 and GB 27 was compatible with T. viride pq 1 and Thiram(equation omitted). Integrated use of these two bacterial isolates with T. viride pq 1 or Thiram(equation omitted) improved their biocontrol efficacy. Combined application of either GB 10 or GB 27 with T. viride pq 1 was significantly effective than that with Thiram(equation omitted) in protecting groundnut seedlings from stem rot infection.

Genetic Variation and Biological Control of Fusarium graminearum Isolated from Wheat in Assiut-Egypt

  • Mahmoud, Amer F.
    • The Plant Pathology Journal
    • /
    • v.32 no.2
    • /
    • pp.145-156
    • /
    • 2016
  • Fusarium graminearum Schwabe causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss of wheat and other cereal crops. Twelve isolates of F. graminearum were collected from naturally infected spikes of wheat from Assiut Egypt. These isolates were compared using SRAP. The results indicated distinct genetic groups exist within F. graminearum, and demonstrated that these groups have different biological properties, especially with respect to their pathogenicity on wheat. There were biologically significant differences between the groups; with group (B) isolates being more aggressive towards wheat than groups (A) and (C). Furthermore, Trichoderma harzianum (Rifai) and Bacillus subtilis (Ehrenberg) which isolated from wheat kernels were screened for antagonistic activity against F. graminearum. They significantly reduced the growth of F. graminearum colonies in culture. In order to gain insight into biological control effect in situ, highly antagonistic isolates of T. harzianum and B. subtilis were selected, based on their in vitro effectiveness, for greenhouse test. It was revealed that T. harzianum and B. subtilis significantly reduced FHB severity. The obtained results indicated that T. harzianum and B. subtilis are very effective biocontrol agents that offer potential benefit in FHB and should be harnessed for further biocontrol applications. The accurate analysis of genetic variation and studies of population structures have significant implications for understanding the genetic traits and disease control programs in wheat. This is the first known report of the distribution and genetic variation of F. graminearum on wheat spikes in Assiut Egypt.

Biocontrol of Potato White Mold Using Coniothyrium minitans and Resistance of Potato Cultivars to Sclerotinia sclerotiorum

  • Ojaghian, Mohammad Reza
    • The Plant Pathology Journal
    • /
    • v.26 no.4
    • /
    • pp.346-352
    • /
    • 2010
  • This study was conducted in Bahar and Lalehjin, Hamadan, Iran to assess the biocontrol efficacy of Coniothyrium minitans Campbell against potato white mold caused by Sclerotinia sclerotiorum (Lib.) de Bary under field and greenhouse conditions. In addition, the resistance of common potato cultivars against S. sclerotiorum was determined in a greenhouse experiment. After straw inoculation of six potato cultivars (Pashandi, Istambouli, Agria, Marfauna, Alpha and Spartaan) with S. sclerotiorum, the least disease severity was observed in Spartaan and Marfauna. Agria showed the most susceptibility to S. sclerotiorum. Compared with the healthy control, different concentrations of C. minitans conidia ($10^7$, $10^8$ and $10^9$ conidia/mL) reduced disease severity under greenhouse condition, and a concentration $10^9$ was the most effective treatment. During 2008 and 2009, four field trials were conducted to evaluate the efficacy of C. minitans in different soil and aerial applications on disease incidence of potato white mold. In 2008, soil application of $Contans^{(R)}$ WG (a commercial product of C. minitans) showed the greatest biocontrol capacity whereas soil application of solid-substrate C. minitans was found inferior when compared with other treatments in both Bahar and Lalehjin field sites. In 2009, benomyl application was the most effective treatment in reducing disease incidence in both tested field sites.