• Title/Summary/Keyword: plant RNA virus

Search Result 319, Processing Time 0.035 seconds

First Report on Carnation vein mottle virus in Dianthus barbatus in Korea

  • Chung, B.N.;Kim, B.D.;Choi, G.S.;Kim, J.S.
    • The Plant Pathology Journal
    • /
    • v.20 no.3
    • /
    • pp.224-228
    • /
    • 2004
  • A potyvirus causing chlorotic mottle and yellow spots on leaves of Dianthus barbatus was isolated and identified as an isolate of Carnation vein mottle virus (CVMV). Purified preparations of Chenopodium quinoa infected with CVMV-K showed filamentous particles between 695 and 785 om long. Many cytoplasmic inclusions were observed, and these consisted of pinwheels, dense bands, loops, and circles. The coat protein of CVMV-K was about 32 KDa in western blot analysis using a CVMV antibody. The nucleotide sequence of coat protein gene showed 97.6% homology with a Japanese isolate. The genome size of CVMV-K was about 9.0 kb by dsRNA analysis. These results indicate that the virus is an isolate of CVMV. This is the first report on CVMV in Korea.

Rapid Screening of Apple mosaic virus in Cultivated Apples by RT-PCR

  • Ryu, Ki-Hyun;Park, Sun-Hee
    • The Plant Pathology Journal
    • /
    • v.19 no.3
    • /
    • pp.159-161
    • /
    • 2003
  • The coat protein (CP) gene of Apple mosaic virus (ApMV), a member of the genus Ilarvirus, was selected for the design of virus-specific primers for amplification and molecular detection of the virus in cultivated apple. A combined assay of reverse transcription and polymerase chain reaction (RT-PCR) was performed with a single pair of ApMV-specific primers and crude nucleic acid extracts from virus-infected apple for rapid detection of the virus. The PCR product was verified by restriction mapping analysis and by sequence determination. The lowest concentration of template viral RNA required for detection was 100 fg. This indicates that the RT-PCR for detection of the virus is a 10$^3$times more sensitive, reproducible and time-saving method than the enzyme-linked immunosorbent assay. The specificity of the primers was verified using other unrelated viral RNAs. No PCR product was observed when Cucumber mosaic virus (Cucumovirus) or a crude extract of healthy apple was used as a template in RT-PCR with the same primers. The PCR product (669 bp) of the CP gene of the virus was cloned into the plasmid vector and result-ant recombinant (pAPCP1) was selected for molecule of apple transformation to breed virus-resistant transgenic apple plants as the next step. This method can be useful for early stage screening of in vitro plantlet and genetic resources of resistant cultivar of apple plants.

Molecular Biological Studies on Korean Garlic Viruses

  • Choi, Jin-Nam;Song, Jong-Tae;Shin, Chan-Seok;La, Yong-Joon;Lee, Jong-Seob;Choi, Yang-Do
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1994.06a
    • /
    • pp.86-102
    • /
    • 1994
  • To understand the molecular structure and pathogenesis mechanism of Korean garlic viruses, we have isolate cDNA clones for garlic viruses. The partial nucleotide sequences of 24 cDNA clones were determined and that of six clones containing poly (A) tail were compared with those of other plant viruses. One of those clones, V9 has 81.8% similarity in nucleotide sequence and 93.0% in deduced amino acid sequence, respectively, to the coat protein gene for garlic mosaic virus (GMV). Northern blot analysis with the clone V9 demonstrated that the genome of GMV is 7.8 kb long and has poly (A) tail. The anti-coat protein antibody for GMV recognizes 35 kDa polypeptide which could be the coat protein of GMV from infected garlic leaf extract or virus preparation. Clone G7 has about 62% of deduced amino acid sequence identity with the members of potyvirus group. Northern blot analysis with the clone G7 demonstrated that the genome of the potyvirus I garlic is 9.0 kb long and has poly (A) tail. The third clone, S81, shows 42% amino acid identity to the potexvirus. The other clones are under the characterization. To test the possibility of producing garlic virus resistant plant, we have designed a hairpin type ribozyme to cleave V9 RNA at the middle of the coat protein gene. From the cleavage reactions in vitro with two different sizes of RNA substrates, V9SUB (144 nucleotides) and V9 RNA (1,361 nucleotides), the ribozyme can cleave V9 sequence effectively at the predicted site. To study the activity of the ribozyme in vivo, plant transformation is in progress. Further possibilities to produce garlic virus resistant plant will be discussed.

  • PDF

Localization of Single Chain Fv Antibodies (scFv) in Transgenic Tobacco Ptants Showing Resistance against Tomato Bushy Stunt Virus

  • Jeun, Y.C.;Boonrod, K.;Nagy, P.;Conrad, U.;Krczal, G.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.75.2-75
    • /
    • 2003
  • To develop an effective protection strategy against tomato bushy stunt virus (TBSV), tobacco plants expressing single-chain Fv antibodies (scFv), were established. A previous had shown that the replication activity of viral replicase was inhibited by the selected scFvs. Moreover, no systemic symptom was found after virus inoculation on leaves of wt N. benthamiana infiltrated with an Agrobacterium suspension resulting i3l expression of the scFvs. However, control plants showed systemic symptoms. In this study the localization of the scFvs within two transgenic plant lines, (CP28H3, CP-P55) was demonstrated using immunogold labelling. The gold particles, indicating the presence of scFv, were mostly found In the cytoplasm of the plant cells including chloroplasts and in the cell walls. However, they were hardly found in the vacuole, nucleoplasm and intercellular spaces. Gold particles often accumulated in either the cytosol or chloroplasts showing a specific labeling, There was no difference in type of gold labeling between both transgenic lines. The localization of the scFv in the cytoplasm further conforms the inhibition of the RNA-dependent RNA polymerase (RdRp) by the selected scFv because it is known that the RdRp is localized to membraneous cytosolic structures.

  • PDF

Molecular Characterization of a Novel Putative Partitivirus Infecting Cytospora sacchari, a Plant Pathogenic Fungus

  • Peyambari, Mahtab;Habibi, Mina Koohi;Fotouhifar, Khalil-Berdi;Dizadji, Akbar;Roossinck, Marilyn J.
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.151-158
    • /
    • 2014
  • Three double-stranded RNAs (dsRNAs), approximately 1.85, 1.65 and 1.27 kb in size, were detected in an isolate of Cytospora sacchari from Iran. Partial nucleotide sequence revealed a 1,284 bp segment containing one ORF that potentially encodes a 405 aa protein. This protein contains conserved motifs related to RNA dependent RNA polymerases (RdRp) that showed similarity to RdRps of partitiviruses. The results indicate that these dsRNAs represent a novel Partitivirus that we tentatively designate Cytospora sacchari partitivirus (CsPV). Treatment of the fungal strain by cyclohexamide and also hyphal tip culture had no effect on removing the putative virus. Phylogenetic analysis of putative RdRp of CsPV and other partitiviruses places CsPV as a member of the genus Partitivirus in the family Partitiviridae, and clustering with Aspergillus ochraceous virus 1.

Transient Expression of Homologous Hairpin RNA Interferes with Broad bean wilt virus 2 Infection in Nicotiana benthamiana

  • Yoon, Ju-Yeon;Ryu, Ki Hyun;Choi, Seung-Kook;Choi, Gug Sun;Kwon, Soon Bae;Park, Jin Woo;Palukaitis, Peter
    • Research in Plant Disease
    • /
    • v.18 no.4
    • /
    • pp.268-276
    • /
    • 2012
  • Broad bean wilt virus 2 (BBWV2), genus Fabavirus, subfamily Comovirinae, family Secoviridae, causes damage in many economically important horticultural and ornamental crops. Sequence alignments showed several conserved sequences in 5' non-coding regions (5' NCRs) of RNA 1 and RNA 2 in all BBWV2 strains characterized so far. Based on this observation, we generated a hpRNA construct (pIR-BBWV2) harboring an inverted repeat containing a 210 bp cDNA fragment homologous to 5' NCR portion of BBWV2 RNA 1 to investigate the silencing potential for its ability to interfere with a rapidly replicating BBWV2. Agrobacterium-mediated transient expression of the IR-BBWV2 had a detrimental effect on BBWV2 infection, showing no distinct symptoms in non-inoculated leaves of the agroinfiltrated Nicotiana benthamiana plants. BBWV2 genomic RNAs were not detected by RT-PCR from tissues of both the inoculated leaves and upper leaves of the agroinfiltrated plants. Accumulation of virus-derived small interfering RNAs was detected in the inoculated leaf tissues of N. benthamiana plants elicited by transient expression of IR-BBWV2 indicating that RNA silencing is responsible for the resistance to BBWV2.

Alternanthera mosaic virus - an alternative 'model' potexvirus of broad relevance

  • Hammond, John;Kim, Ik-Hyun;Lim, Hyoun-Sub
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.2
    • /
    • pp.145-180
    • /
    • 2017
  • Alternanthera mosaic virus (AltMV) is a member of the genus Potexvirus which has been known for less than twenty years, and has been detected in Australasia, Europe, North and South America, and Asia. The natural host range to date includes species in at least twenty-four taxonomically diverse plant families, with species in at least four other families known to be infected experimentally. AltMV has been shown to differ from Potato virus X (PVX), the type member of the genus Potexvirus, in a number of ways, including the subcellular localization of the Triple Gene Block 3 (TGB3) protein and apparent absence of interactions between TGB3 and TGB2. Differences between AltMV variants have allowed identification of viral determinants of pathogenicity, and identification of residues involved in interactions with host proteins. Infectious clones of AltMV differing significantly in symptom severity and efficiency of RNA silencing suppression have been produced, suitable either for high level protein expression (with efficient RNA silencing suppression) or for Virus-Induced Gene Silencing (VIGS; with weaker RNA silencing suppression), demonstrating a range of utility not available with most other plant viral vectors. The difference in silencing suppression efficiency was shown to be due to a single amino acid residue substitution in TGB1, and to differences in subcellular localization of TGB1 to the nucleus and nucleolus. The current state of knowledge of AltMV biology, including host range, strain differentiation, host interactions, and utility as a plant viral vector for both protein expression and VIGS are summarized.

Isolation and Identification of Barley Yellow Mosaic Virus in Korea (보리누른모자이크바이러스(BaYMV)의 분리 및 동정)

  • 이귀재;소인영;백기철
    • Korean Journal Plant Pathology
    • /
    • v.14 no.1
    • /
    • pp.62-67
    • /
    • 1998
  • Barley yellow mosaic virus (BaYMV-HN) occurring Haenam area was isolated by mechanical inoculation onto barley cultivars, purification and production of antibody. BaYV-HN were purified from infected plants a filamentous virus with 13 nm in diameter and 250∼300 nm and 500∼650 nm in length. Specific antibody made by injecting the purified virus to the muscle of a rabbit. In gel-diffusion tests antibody to BaYMV-HN did not make spur with tow Japanese BaYMV isolates BaYMV-II-1 or BaYMV-III. BaYMV-HN showed the symptom of yellowing and necrosis in host plants. Mechanical inoculation tests with Japanese barley cultivars showed that BaYMV-HN infected New Golden, Akagi Nijo and Tosan Kawa 73, but did not infect Amagi Nijo, Haruna Nijo, Ishukushirazu (ym3), Misato Golden (Ym1), Kashimamugi, Joshushiro Hadaka and Mokusekko 3 (ym1). In Korean barley cultivars, some of the naked barleys which are Hinssalbori, Kinssalbori, Saessalbori and Saechalssalbori were not infected by BaYMV-HN. However, it infected all the covered barley cultivars and the beer barley cultivars. BaYMV-HN had two RNAs, RNA 1 (7.6 Kb) and RNA 2 (3.5 Kb), and one coat protein (33 KDa).

  • PDF

Complementary DNA Cloning and Restriction Mapping of Nuclear Inclusion Body and Coat Protein Genes of Turnip Mosaic Virus-Ca Strain Genomic RNA (순무모자이크 바이러스 Ca계통 핵봉입체와 외피단백질 유전자의 cDNA 클로닝 및 제한효소 지도작성)

  • 류기현;박원목
    • Korean Journal Plant Pathology
    • /
    • v.10 no.3
    • /
    • pp.235-239
    • /
    • 1994
  • Viral RNA was extracted from purified Chinese cabbage strain of turnip mosaic virus (TuMV-Ca) from infected leaves of turnip. Polyadenylated genomic viral RNA was recovered by oligo (dT) cellulose column chromatography and used as a template for the synthesis of complementary DNA (cDNA). Recombinant plasmids contained cDNA ranged from about 900 bp to 2, 450 bp were synthesized. Among the selected 41 transformants, pTUCA31 and pTUCA35 had over 2 Kbp cDNA insert. Restriction endonuclease patterns of the clones examined were very similar among them. Clones pTUCA23 and pTUCA31 were overlapped with pTUA35. The longest clone pTUCA35, encoding 3'-end, showed that it contained two sites for EcoRI, and one site for BamHI, ClaI, HincII, SacI and XbaI, respectively. The restriction mapping indicated that the clone pTUCA35 contained partial nuclear inclusion body gene, complete coding region of the coat protein and 3' untranslated region of TuMV-Ca genomic RNA.

  • PDF

Isolation and Characterization of Chlorella Virus from Fresh Water in Korea and Application in Chlorella Transformation System

  • Park, Hye-Jin;Yoon, Hong-Mook;Jung, Heoy-Kyung;Choi, Tae-Jin
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.13-20
    • /
    • 2005
  • Chlorella viruses are large icosahedral, plaque-forming, dsDNA viruses that infect certain unicellular, chlorellalike green algae. The genomic DNA of over 300 kb contains many useful genes and promoters. Over 40 chlorella viruses have been isolated from fresh water in Korea since 1998. The viruses were amplified initially in chlorella strain NC64A, and pure isolates were obtained by repeated plaque isolation. SDS-PAGE analysis revealed similar but distinct protein patterns, both among the group of purified viruses and in comparison with the prototype chlorella virus PBCV-1. Digestions of the 330- to 350-kb genomic DNAs with 10 restriction enzymes revealed different restriction fragment patterns among the isolates. The tRNA-coding regions of 8 chlorella viruses were cloned and sequenced. These viruses contain 14-16 tRNA genes within a 1.2- to 2-kb region, except for the SS-1 isolate, which has a 1039-bp spacer in a cluster of 11 tRNA genes. Promoter regions of several early genes were isolated and their activities were analyzed in transformed chlorella. Some promoters showed stronger activity than commonly used CaMV 35S promoter and chlorella transformation vectors for heterologous protein are beings constructed using these promoters.