• Title/Summary/Keyword: plant seeds

검색결과 1,851건 처리시간 0.042초

Effects of Sonication, Osmotic Priming and Modified Drum Priming on the Germination of Tomato Seeds

  • Kim, Min Geun;Kang, Won Sik;Kim, Du Hyun
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 추계학술대회
    • /
    • pp.88-88
    • /
    • 2018
  • In order to increase the germination speed and uniformity of tomato seeds, sonication and modified drum priming treatments were investigated to produce high quality seeds for export. Sonication treatment was performed for 5, 10 and 20minutes at an intensity of 5.2, 10.4 and 15.7kHz in water at $15^{\circ}C$. After sonication treatment, seeds were primed with water or 100mM $KNO_3$ for 4days. 40, 50 and 60% seed moisture content (SMC) of hydrated seeds were incubated for 60, 72 and 84h in a container with a relative humidity of 99% at 26rpm for a modified drum priming treatments. Germination speed were highly improved by sonication with osmotic priming. The seed treatment of osmotic priming or hydro priming after sonication or sonication without priming enhanced germination percentage (GP) on the $2^{rd}$day after sowing to 46%, 43% and 28%, respectively, while untreated seeds resulted in only 1% GP. These treatments also highly improved mean germination time (MGT) to 1.4, 1.8 and 2.6days, respectively, when compared to 3.5days MGT of untreated seeds. The modified drum priming treatment (72h incubation after 60% SMC hydration) significantly improved results of 74% GP(on the $3^{rd}$day after sowing), 2.6days MGT and $39%{\cdot}day^{-1}$ germination rate (GR), however, untreated seeds showed 19% GP, 4.1 MGT, and $25%{\cdot}day^{-1}$ GR. Although osmotic priming after sonication, hydro priming showed similar improved germination characteristics, however, modified drum priming is considered as an industrially promising treatment methods considering the shortening of the treatment period and environment-friendly aspects.

  • PDF

Inhibition of Seed Germination and Induction of Systemic Disease Resistance by Pseudomonas chlororaphis O6 Requires Phenazine Production Regulated by the Global Regulator, GacS

  • Kang, Beom-Ryong;Han, Song-Hee;Zdor, Rob E.;Anderson, Anne J.;Spencer, Matt;Yang, Kwang-Yeol;Kim, Yong-Hwan;Lee, Myung-Chul;Cho, Baik-Ho;Kim, Young-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권4호
    • /
    • pp.586-593
    • /
    • 2007
  • Seed coating by a phenazine-producing bacterium, Pseudomonas chlororaphis O6, induced dose-dependent inhibition of germination in wheat and barley seeds, but did not inhibit germination of rice or cucumber seeds. In wheat seedlings grown from inoculated seeds, phenazine production levels near the seed were higher than in the roots. Deletion of the gacS gene reduced transcription from the genes required for phenazine synthesis, the regulatory phzI gene and the biosynthetic phzA gene. The inhibition of seed germination and the induction of systemic disease resistance against a bacterial soft-rot pathogen, Erwinia carotovora subsp. carotovora, were impaired in the gacS and phzA mutants of P chlororaphis O6. Culture filtrates of the gacS and phzA mutants of P. chlororaphis O6 did not inhibit seed germination of wheat, whereas that of the wild-type was inhibitory. Our results showed that the production of phenazines by P. chlororaphis O6 was correlated with reduced germination of barley and wheat seeds, and the level of systemic resistance in tobacco against E. carotovora.

Direct Evidence of Endophyte (Neotyphodium coenophialum) Genotype Effect on Growth and Vertical Transmission of Endophyte in Tall Fescue (Schedonorus phoenix Scop.) Under Water Stress

  • Ju, Ho-Jong
    • The Plant Pathology Journal
    • /
    • 제27권3호
    • /
    • pp.249-256
    • /
    • 2011
  • Tall fescue (Schedonorus phoenix Scop.) is resistant to abiotic and biotic stresses through a symbiotic relationship with Neotyphodium coenophialum. However, this endophyte has been considered detrimental since it produces toxic alkaloids to animals. It is vital to understand mutuality between these two to maximize positive impact of the endophyte on agri-ecosystem. Little research has been conducted on endophyte transmission mechanism in planta. To provide basic information related to endophyte transmission, an experiment was conducted to examine the effect of endophyte genotype and water stress on endophyte transmission by imposing soil moisture deficits at different stages of panicle development. There was water stress effect on endophyte frequency but not on concentration, whereas endophyte genotype significantly influenced endophyte concentration in pseudostem of tall fescue at boot stage. Reproductive tillers showed greater endophyte frequency and concentration. Endophyte frequency in florets or seeds depended on position within panicle. There was no drought effect on endophyte concentration, but showed the effect of endophyte genotype on endophyte concentration in florets and seeds. Overall endophyte concentration in seeds was higher. From this study, we may conclude that although water stress reduced endophyte frequency in vegetative tiller, water stress does not have effect on endophyte transmission, suggesting that drought is not an important factor controlling the endophyte transmission from plant to seed. Endophyte genotype and seed position in a panicle affected endophyte transmission, indicating that these two factors are involved in endophyte transmission and may determine seed transmission of endophyte in tall fescue.

Optimization Conditions for Cryopreservation of Deutzia paniculata Nakai, Endangered Plant

  • Seol, Yuwon;Yong, Seong Hyeon;Choi, Eunji;Jeong, Mi Jin;Suh, Gang Uk;Lee, Cheul Ho;Choi, Myung Suk
    • Journal of Forest and Environmental Science
    • /
    • 제36권4호
    • /
    • pp.274-280
    • /
    • 2020
  • As the importance of biological resources increases, the conservation technology is becoming important for rarities. This study was conducted to establish an efficient cryopreservation conditions for the Deutzia paniculata, endangered plant species, by using both cryopreservation methods of vitrification and encapsulation. As a result, the sucrose pretreatment seed viability showed up to 30.7% in the treatments. The cryoprotectant treatment improved the viability of the seeds, and was found to be excellent in the vitrification method using PVS3. The vitrification method had over 10% higher germination rate than the seeds preserved by encapsulation. In addition, the germination rate showed a significant difference according to the cryopreservation treatment time, and the germination rate of seeds decreased very much as the long time became longer. Plants germinated from preserved seed in liquid nitrogen showed poor growth compared to untreated, and good growth in PVS3 120 minutes. In addition, the growth of germinated plants by liquid nitrogen treatment time was better in the vitrification method. These results are expected to be useful for long-term preservation of D. paniculata, endangered plants.

인삼종자로부터 분리된 내생균의 동정과 식물생장 촉진 관련 활성의 평가 (Identification of Endophytic Bacteria in Panax ginseng Seeds and Their Potential for Plant Growth Promotion)

  • 엄유리;김보라;정진주;정찬문;이이
    • 한국약용작물학회지
    • /
    • 제22권4호
    • /
    • pp.306-312
    • /
    • 2014
  • Endophytes are microorganisms that live in the internal tissues of plants without harming the host plants. In this symbiotic relationship, the host plants provide nutrients and shelter to the endophytes, in turn, endophytes can promote the growth of host plants and act as a biological control agents against plant pathogens. Plant-microbe interactions like this are noted for natural methods for sustainable agriculture and environmental conservation. However, in spite of the infinite potential, there are only a few reports on the endophytes present in ginseng. In this study, we isolated and identified the endophytes from Panax ginseng seeds and evaluated the biological activities (IAA production ability, nitrogen fixation ability, phosphate solubilization capacity, siderophore production ability, and antifungal activities) of the endophyte isolates. Eight different endophytes were identified by 16S rRNA sequencing. Most of the endophytes have antibiotic and plant growth promoting (PGP) activities. Particularly, PgSEB5-37E have the highest antibiotic activity, both PgSEB5-37B and PgSEB5-37H have high PGP traits such as an abilities to produce IAA, solubilize phosphate and fix nitrogen. These results indicated that the endophytes from P. ginseng seeds may have applicable value to many industries. In order to use the isolated endophytes, quantitative analysis and field tests are needed to be performed.

Decursin과 Decursinol이 식물의 생장과 발아에 미치는 영향 (Effects of Decursin and Decursinol on the Germination and Growth of Plants)

  • 이진범
    • Journal of Plant Biology
    • /
    • 제19권1호
    • /
    • pp.7-13
    • /
    • 1976
  • Biological activities of decursin and decursinol, natural coumarin derivatives, on the germination, growth and adventitious root formation of several plants were observed. In 10 ppm of decursin or decursinol, the growth of Avena coleoptile sections was inhibited, and the activity of IAA-oxidase was gradually enhanced by the increase of its concentrations. Inhibition effect on seed germination was observed from 100 ppm of each chemcials, and the activity of amylase in the germinating seeds was also gradually decreased. However, in the higher concentrations of decursin, the inhibited germination rate of wheat was slightly reduced. Decursin and decursinol also promoted the adventitious root formation in seeds of Phaseolus vulgaris.

  • PDF