• Title/Summary/Keyword: plant pathogen

Search Result 1,185, Processing Time 0.028 seconds

Selection of Nitrate-nonutilizing Mutants of Hypoxylon atropunctatum, A Fungal Pathogen on Oak Species

  • Chun, Se-Chul;Fenn, P.
    • The Plant Pathology Journal
    • /
    • v.16 no.5
    • /
    • pp.247-251
    • /
    • 2000
  • Latent infections of healthy-appearing oaks of Hypoxylon atropunctatum complicates field studies by interfering with inoculation experiments to follow pathogenesis, fungal development and reproduction of this canker rot fungus. Mutants with unique and easily scorable phenotypes would be useful for inoculation studies. There is a broad range in the capacity of wild-type isolates to utilize nitrate as a sole nitrogen sources. Several types of nitrate-nonutilization mutants (nit1, Nit3, NitM) were selected from nitrate-utilizing wild-type isolates. Also, a few mutants of Hypoxylon atropunctatum were selected that could only grow poorly on basal medium supplemented with various nitrogen sources and even on yeast extract agar. These unknown mutants need to be characterized further. Nit mutants of Hypoxylon atropunctatum were readily selected, grew well and were recovered after inoculation into oak stems. These results suggest that nit mutants could be useful for inoculation studies in trees that contain latent infections.

  • PDF

First Report of Phytophthora palmivora in Cheju Island as the Causal Pathogen of Phytophthora Crown Rot of Cymbidium (제주도에서 처음으로 발생한 Phytophthora palmivora에 의한 심비디움 역병)

  • 홍순영;지형진;현승원
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.725-728
    • /
    • 1998
  • Phytophthora crown rot of cymbidium was observed in Cheju island since June of 1996. The disease initiated at the basal portion of infected plant progressed upward to lower leaves. Soon after distinct water-soaking lesions appeared on lower leaves, the plant was wilted, blighted and died. Four orchid farms at Sogwipo out of 16 surveyed in the island were infected by the disease estimating 5~20% infection rates. The causal fungus was identified as P. palmivora based on following distinguishing characteristics. All isolates were heterothallic as A1 types and readily produced chlamydospores with cultural age. Sporangia were conspicuous papillate, ellipsoidal to ovoid, highly deciduous with short pedicels ca. 3~4 ${\mu}{\textrm}{m}$. Koch's rules were satisfied by a pathogenicity test and re-isolation of the fungus from inoculated plants. The pathogen has never been reported in Cheju island previously and its firstly recorded as the cause of Phytophthora crown rot of cymbidium in Korea.

  • PDF

Whole Genome Enabled Phylogenetic and Secretome Analyses of Two Venturia nashicola Isolates

  • Prokchorchik, Maxim;Won, Kyungho;Lee, Yoonyoung;Segonzac, Cecile;Sohn, Kee Hoon
    • The Plant Pathology Journal
    • /
    • v.36 no.1
    • /
    • pp.98-105
    • /
    • 2020
  • Venturia nashicola is a fungal pathogen causing scab disease in Asian pears. It is particularly important in the Northeast Asia region where Asian pears are intensively grown. Venturia nashicola causes disease in Asian pear but not in European pear. Due to the highly restricted host range of Venturia nashicola, it is hypothesized that the small secreted proteins deployed by the pathogen are responsible for the host determination. Here we report the whole genome based phylogenetic analysis and predicted secretomes for V. nashicola isolates. We believe that our data will provide a valuable information for further validation and functional characterization of host determinants in V. nashicola.

Morphological and Molecular Characterization of Pseudocercospora chionanthi-retusi Causing Leaf Spot on Chionanthus retusus in Korea

  • Choi, In-Young;Abasova, Lamiya;Choi, Joon-Ho;Shin, Hyeon-Dong
    • Research in Plant Disease
    • /
    • v.28 no.2
    • /
    • pp.57-60
    • /
    • 2022
  • Leaves of Chionanthus retusus were found to be damaged by leaf spot disease associated with a fungus in Iksan, Korea. Leaf spots were angular to irregular, vein-limited, scattered, 1-8 mm diameter, brownish-gray to dark brown when dry, with heavy fructification. The pathogen causes premature defoliation of C. retusus plant and was identified as Pseudocercospora chionanthi-retusi based on morphological and molecular-phylogenetic analyses. The phylogenetic tree was constructed using multi-locus DNA sequence data of partial actin (actA), partial translation elongation factor 1-alfa (tef1), partial DNA-directed RNA polymerase II second largest subunit (rpb2) genes, and internal transcribed spacer regions. Current study provides detail morphological description of P. chionanthi-retusi on C. retusus in Korea, with supports of phylogenetic analysis and pathogenicity test.

Effects of Atmospheric Ozone on the Rice Blast Pathogen Pyricularia grisea

  • Hur, Jae-Seoun;Kim, Ki-Woo;Kim, Pan-Gi;Yun, Sung-Chul;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • v.16 no.1
    • /
    • pp.19-24
    • /
    • 2000
  • The direct effects of acute $\textrm{O}_3$ on the growth, sporulation and infection of Pyricularia grisea, rece blast pathogen, were investigated to understand the interactions between ozone and the pathogen. Acute exposure of 200 nl $\textrm{l}^{-1}$ ozone for 8 h significantly reduced conidia germination on water atar. Ozone exposure of 200 nl $\textrm{l}^{-1}$ for 8h per day for 5 days had no effect on increase in colony diameter, but severely damaged actively growing aerial mycelia. However, the damage to mycalia was recovered during the following 16 h exposure of unpolluted air. Conidial production was also stimulated by the acute ozone exposure for 5 days. The conidia exposed to the acute ozone for 5 days normally germinates but slightly reduce appressoria formation on rice leaf. However, the conidia produced by artificial stimulation under the same ozone concentration for 10 days showed significant reduction in appressorea for mation on a hydrophobic film. This study suggests that the acute ozone could ingibit appressoria formation as well as vegetative growth of the pathogen, resulting in decrease in rece blast development in the field during summer when high ozone episodes could occur occasionally.

  • PDF

Changes in the Aggressiveness and Fecundity of Hot Pepper Anthracnose Pathogen (Colletotricum acutatum) under Elevated CO2 and Temperature over 100 Infection Cycles

  • Koo, Tae-Hoon;Hong, Sung-Jun;Yun, Sung-Chul
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.260-265
    • /
    • 2016
  • We observed the changes in aggressiveness and fecundity of the anthracnose pathogen Colletotrichum acutatum on hot pepper, under the ambient and the twice-ambient treatments. Artificial infection was repeated over 100 cycles for ambient ($25^{\circ}C/400ppm$ $CO_2$) and twice-ambient ($30^{\circ}C/700ppm$ $CO_2$) growth chamber conditions, over 3 years. During repeated infection cycles (ICs) on green-pepper fruits, the aggressiveness (incidence [% of diseased fruits among 20 inoculated fruits] and severity [lesion length in mm] of infection) and fecundity (the average number of spores per five lesions) of the pathogen were measured in each cycle and compared between the ambient and twice-ambient treatments, and also between the early (ICs 31-50) and late (ICs 81-100) generations. In summary, the pathogen's aggressiveness and fecundity were significantly lower in the late generation. It is likely that aggressiveness and fecundity of C. acutatum may be reduced as global $CO_2$ and temperatures increase.

Current Status of Bacterial Brown Stripe of Rice Caused by Acidovorax avenae subsp. avenae (Acidovorax avenae subsp. avenae에 의한 세균성줄무늬병의 연구동향)

  • 송완엽
    • Plant Disease and Agriculture
    • /
    • v.5 no.2
    • /
    • pp.69-76
    • /
    • 1999
  • Acidovorax avenae subsp. avenae is the causal pathogen of several hosts including oats corn foxtail millet wheatgrass sugarcane and rice. The pathogen is a seedborne pathogen of rice and known to occur widely in rice growing countries. The pathogen cause inhibition of germination brown stripe on the leaf curling of the leaf sheath and abnormal elongation of the mesocotyl of irce. Bacterial colonies grow slowly and are convex circular and creamy with tan to brown center. The causal baterium is Gram-negative and rod shape with a single polar flagellum Nonfluorescence poly-$\beta$-hydroxybutyrate accumulation and precipitate formation around the colony on the medium are useful in the differentiation of this bacterium from other subspecies of A. avenae as well as nonfluorescent bacteria pathogenic to rice. This bacterium has belonged to the genus of Psdeudomonas but recently was transferred to the new genus Acidovorax on the basis of bacteriological and molecular biological data. However the difference of biochemical characteristics protein profile of the cell and host range among strains should be more clarified. To develop an effective control strategy for this disease understanding of detailed life cycle of the disease ritical environmental factors affecting disease development on each host and relationship to grain discoloration of rice are prerequisite. Although the affected area has been world-widely reported there is on recent progress on the understanding of the bacteriological and ecological characteristics of the causal bacterium and control means of the disease.

  • PDF

Identification of Alternaria alternata as a Causal Agent for Leaf Blight in Syringa Species

  • Mmbaga, Margaret T.;Shi, Ainong;Kim, Mee-Sook
    • The Plant Pathology Journal
    • /
    • v.27 no.2
    • /
    • pp.120-127
    • /
    • 2011
  • While many isolates of Alternaria alternata are common saprophytes on trees and shrubs, this study clearly demonstrated that A. alternata is a primary pathogen in lilac (Syringa sp.), causing a leaf-blight that affects different Syringa species. Isolates of Alternaria sp. were collected from leaf blight samples of lilacs in the field. The internal transcribed spacer (ITS) region and morphological characterization were used to identify lilac blight pathogen. Based on 100% ITS nucleotide sequence identities to the Alternaria genus in the GenBank and morphological features, these isolates were identified as A. alternata. Disease symptoms were reproduced in lilac plants inoculated with A. alternata mycelial plugs and sprayed with a fungus-free culture filtrate, indicating that pathogenesis in lilac involves secondary metabolites or toxins. Diagnostic primers were developed to detect Alternaria sp. and A. alternata in lilac leaf blight based on ITS region and four known genes associated with pathogenesis in A. alternata: mixed-linked glucanase precursor, endopolygalacturonase, hsp70, and histone genes. The results from our study indicated A. alternata is a primary pathogen in lilac leaf blight, and these diagnostic primers can be used as a tool for the fast detection of A. alternata associated with lilac leaf blight.

Analysis of Fungicide Sensitivity and Genetic Diversity among Colletotrichum Species in Sweet Persimmon

  • Gang, Geun-Hye;Cho, Hyun Ji;Kim, Hye Sun;Kwack, Yong-Bum;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.115-122
    • /
    • 2015
  • Anthracnose, caused by Colletotrichum gloeosporioides (C. gloeosporioides; Teleomorph: Glomerella cingulata), is the most destructive disease that affects sweet persimmon production worldwide. However, the biology, ecology, and genetic variations of C. gloeosporioides remain largely unknown. Therefore, in this study, the development of fungicide resistance and genetic diversity among an anthracnose pathogen population with different geographical origins and the exposure of this population to different cultivation strategies were investigated. A total of 150 pathogen isolates were tested in fungicide sensitivity assays. Five of the tested fungicides suppressed mycelial pathogen growth effectively. However, there were significant differences in the sensitivities exhibited by the pathogen isolates examined. Interestingly, the isolates obtained from practical management orchards versus organic cultivation orchards showed no differences in sensitivity to the same fungicide. PCR-restriction fragment length polymorphism (RFLP) analyses were performed to detect internal transcribed spacer regions and the ${\beta}$-tubulin and glutamine synthetase genes of the pathogens examined. Both the glutamine synthetase and ${\beta}$-tubulin genes contained a complex set of polymorphisms. Based on these results, the pathogens isolated from organic cultivation orchards were found to have more diversity than the isolates obtained from the practical management orchards.

Stable Microbial Community and Specific Beneficial Taxa Associated with Natural Healthy Banana Rhizosphere

  • Fu, Lin;Ou, Yannan;Shen, Zongzhuan;Wang, Beibei;Li, Rong;Shen, Qirong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1624-1628
    • /
    • 2019
  • Banana planting altered microbial communities and induced the enrichment of Fusarium oxysporum in rhizosphere compared with that of forest soil. Diseased plant rhizosphere soil (WR) harbored increased pathogen abundance and showed distinct microbial structures from healthy plant rhizosphere soil (HR). The enriched taxon of Bordetella and key taxon of Chaetomium together with some other taxa showed negative associations with pathogen in HR, indicating their importance in pathogen inhibition. Furthermore, a more stable microbiota was observed in HR than in WR. Taken together, the lower pathogen abundance, specific beneficial microbial taxa and stable microbiota contributed to disease suppression.