• Title/Summary/Keyword: plant pathogen

Search Result 1,185, Processing Time 0.034 seconds

Pathogen Inducible Voltage-Dependent Anion Channel (AtVDAC) Isoforms Are Localized to Mitochondria Membrane in Arabidopsis

  • Lee, Sang Min;Hoang, My Hanh Thi;Han, Hay Ju;Kim, Ho Soo;Lee, Kyunghee;Kim, Kyung Eun;Kim, Doh Hoon;Lee, Sang Yeol;Chung, Woo Sik
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.321-327
    • /
    • 2009
  • Voltage-dependent anion channels (VDACs) are reported to be porin-type, ${\beta}$-barrel diffusion pores. They are prominently localized in the outer mitochondrial membrane and are involved in metabolite exchange between the organelle and the cytosol. In this study, we have investigated a family of VDAC isoforms in Arabidopsis thaliana (AtVDAC). We have shown that the heterologous expression of AtVDAC proteins can functionally complement a yeast mutant lacking the endogenous mitochondrial VDAC gene. AtVDACs tagged with GFP were localized to mitochondria in both yeast and plant cells. We also looked at the response of AtVDACs to biotic and abiotic stresses and found that four AtVDAC transcripts were rapidly up-regulated in response to a bacterial pathogen.

Defense Inducer Compounds Up-regulated the Peroxidase, Polyphenol Oxidase, and Total Phenol Activities against Spot Blotch Disease of Wheat

  • Puja Kumari;Chandrashekhar Azad;Ravi Ranjan Kumar;Jyoti Kumari;Kumar Aditya;Amarendra Kumar
    • The Plant Pathology Journal
    • /
    • v.39 no.2
    • /
    • pp.159-170
    • /
    • 2023
  • Spot blotch disease of wheat caused by Bipolaris sorokiniana (Sacc.) Shoem is considered as an economically important disease which affects all the growing stages of wheat crop. Therefore, it is important to search some effective management strategies against the spot blotch pathogen. Some synthetic elicitor compounds (salicylic acid, isonicotinic acid, and chitosan) and nano-particles (silver and aluminum) were tested against the pathogen to observe the change in biochemical activity and defense action of wheat plant against spot blotch disease. All the tested elicitor compounds and nano-particles showed a significant increase in activity of peroxidase, polyphenol oxidase (PPO), and total phenol over control. The highest increase in activity of peroxidase was recorded at 72 h from chitosan at 2 mM and 96 h from silver nano-particle at 100 ppm. Maximum PPO and total phenol activity were recorded from chitosan at 2 mM and silver nano-particle at 100 ppm as compared to pathogen-treated and healthy control. The lowest percent disease index, lowest no. of spots/leaf, and no. of infected leaves/plant were found in silver nano-particle at 100 ppm and chitosan at 2 mM, respectively. The use of defense inducer compounds results in significantly up-regulated enzymatic activity and reduced spot blotch disease. Therefore, chitosan and silver nano-particle could be used as alternative methods for the management of spot blotch disease.

Functions of MAPK Cascade Pathways in Plant Defense Signaling

  • Cheong, Yong-Hwa;Kim, Min-Chul
    • The Plant Pathology Journal
    • /
    • v.26 no.2
    • /
    • pp.101-109
    • /
    • 2010
  • Protein phosphorylation is one of the major mechanisms for controlling many cellular processes in all living organisms. Mitogen-activated protein kinase (MAPK) cascades are known to transducer extracellular stimuli to several cellular processes, including cell division, differentiation as well as responses to various stresses. In plants, several studies have revealed that MAPK cascade pathways play an important role in responses against biotic and abiotic stresses, including wounding, pathogen infection, temperature, drought, salinity and plant hormones. It is also known that MAPK cascades-mediated signaling is an essential process in the resistance step to pathogens by regulating the activity of transcription factors. Here, the insights into the functions of MAPK cascade pathways in plant defense response signaling from Arabidopsis, tobacco and rice are described.

Biological Control of Rice Bakanae by an Endophytic Bacillus oryzicola YC7007

  • Hossain, Mohammad Tofajjal;Khan, Ajmal;Chung, Eu Jin;Rashid, Md. Harun-Or;Chung, Young Ryun
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.228-241
    • /
    • 2016
  • In our previous study, we reported that a novel endophytic bacterium Bacillus oryzicola YC7007 has suppressed bacterial diseases of rice via induced systemic resistance and antibiotic production. This endophytic strain, B. oryzicola YC7007 was used as a biological control agent against bakanae disease of rice caused by Fusarium fujikuroi, and its mechanism of interaction with the pathogen and the rice was further elucidated. Root drenching with B. oryzicola YC7007 suspension reduced the disease severity of bakanae significantly when compared with the untreated controls. The treatments of B. oryzicola YC7007 suspension ($2.0{\times}10^7cfu/ml$) to the rice rhizosphere reduced bakanae severity by 46-78% in pots and nursery box tests containing autoclaved and non-autoclaved soils. Moreover, in the detached rice leaves bioassay, the development of necrotic lesion and mycelial expansion of F. fujikuroi were inhibited significantly by spraying the culture filtrate of B. oryzicola YC7007. Drenching of ethyl acetate extracts of the culture filtrate to the rhizosphere of rice seedlings also reduced the bakanae disease severity in the plant culture dish tests. With the root drenching of B. oryzicola YC7007 suspension, the accumulation of hydrogen peroxide was observed at an early stage of rice seedlings, and a hormonal defense was elicited with and without pathogen inoculation. Our results showed that the strain B. oryzicola YC7007 had a good biocontrol activity against the bakanae disease of rice by direct inhibition, and was also capable of inducing systemic resistance against the pathogen via primed induction of the jasmonic acid pathway.

Seed-born Burkholderia glumae Infects Rice Seedling and Maintains Bacterial Population during Vegetative and Reproductive Growth Stage

  • Pedraza, Luz Adriana;Bautista, Jessica;Uribe-Velez, Daniel
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.393-402
    • /
    • 2018
  • Rice world production is affected due to the growing impact of diseases such as bacterial panicle blight, produced by Burkholderia glumae. The pathogen-induced symptoms include seedling rot, grain rot and leafsheath browning in rice plants. It is currently recognized the entrance of this pathogen to the plant, from infected seeds and from environmental sources of the microorganism. However, it is still not fully elucidated the dynamics and permanence of the pathogen in the plant, from its entry until the development of disease symptoms in seedlings or panicles. In this work it was evaluated the infection of B. glumae rice plants, starting from inoculated seeds and substrates, and its subsequent monitoring after infection. Various organs of the plant during the vegetative stage and until the beginning of the reproductive stage, were evaluated. In both inoculation models, the bacteria was maintained in the plant as an endophyte between $1{\times}10^1$ and $1{\times}10^5cfu$ of B. $glumae.g^{-1}$ of plant throughout the vegetative stage. An increase of bacterial population towards initiation of the panicle was observed, and in the maturity of the grain, an endophyte population was identified in the flag leaf at $1{\times}10^6cfu$ of B. $glumae.g^{-1}$ fresh weight of rice plant, conducting towards the symptoms of bacterial panicle blight. The results found, suggest that B. glumae in rice plants developed from infected seeds or from the substrate, can colonize seedlings, establishing and maintaining a bacterial population over time, using rice plants as habitat to survive endophyticly until formation of bacterial panicle blight symptoms.

Observations of Infection Structures on the Leaves of Cucumber Plants Pre-treated with Arbuscular Mycorrhiza Glomus intraradices after Challenge Inoculation with Colletotrichum orbiculare

  • Lee, Chung-Sun;Lee, Yun-Jeong;Jeun, Yong-Chull
    • The Plant Pathology Journal
    • /
    • v.21 no.3
    • /
    • pp.237-243
    • /
    • 2005
  • Resistance inductions on the leaves of cucumber plant by an arbuscular mycorrhiza Glomus intraradices were investigated. In addition, the infection structures were observed at the penetration sites on the leaves of plant inoculated with Colletotrichum orbiculare using a fluorescence microscope. The severity of anthracnose disease caused by Colletotrichum orbiculare was significantly decreased on the leaves of cucumber plant colonized with G intraradices compared with those of non-treated control plants. As a positive control, pre-treatment with DL-3-aminobutyric acid (BABA) caused a remarkable reduction of the disease severity on the pathogen-inoculated leaves. There were no significant differences in the frequency of either germination or appressorium formation of the plant pathogen between mycorrhiza colonized and non-treated plants. It was also the same on the BABA pre-treated plants. However, the frequency of callose formation was significantly high on the leaves of G intraradices colonized plants compared to those of non-treated control plants at 5 days after challenge inoculation. On the leaves of BABA treated plants callose formation was not significantly high than those of non-treated, although the disease severity was more strongly suppressed. It was suggested that the resistance induced by colonization with G. intraradices might be related to the enhancement of callose formation at the penetrate sites on the leaves invaded by the pathogen, whereas resistance by BABA did not.

Leaf Blight of Kudzu (Pueraria lobata) caused by Fusarium solani

  • Kim, Ja-Moon;Lee, Jung-Sook;Song, Wan-Yeob;Kim, Hyung-Moo;Seo, Byung-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.132.3-133
    • /
    • 2003
  • Leaf blight of kudzu ( Pueraria lobata ) was found in Jeonbuk province in 2002. The main symptoms appeared as leaf blight and showed yellowing and wilting. The causal pathogen of the leaf blight was isolated from symptomed kudzu leaf and produced white to cream, usually floccose mycelium. It readily formed reddish orange mycelium on PDA. It produced typical microconidia and macroconidia. The microconidia were the reniform. The macroconidia were wide, slightly curved, usually 3 to 4 septate and size was 45 ∼ 85 ${\times}$ 5 ∼ l0$\mu\textrm{m}$. The pathogen produced chlamydospore singly on short hyphal branches within 2 to 3 weeks, which was hyaline, globose, and smooth walled. The pathogen was, therefore, identified as Fusarium solani based on cultural and morphological characters. This is the first report on the leaf blight of kudzu caused by Fusarium solani in Korea.

  • PDF

Mycological Characteristics and Pathogenicity of Fusarium oxysporum Schlecht. emend. Snyld. & Hans. Causing Stem Rot of Cactus (접목선인장 줄기썩음병균, Fusarium oxysporum Schlecth. emend. Snyd. & Hans.의 균학적 특성과 병원성)

  • 현익화;이상덕;이영희;허노열
    • Korean Journal Plant Pathology
    • /
    • v.14 no.5
    • /
    • pp.463-466
    • /
    • 1998
  • A Fusarium species was isolated from stems of cactus(Hylocereus trigonus) showing rot symptoms at Koyang, Kyonggi province in 1997. This pathogen was identified as Fusarium oxysporum based on mycological characteristics. The rot symptom appeared at the soil line and roughly circular lesions, 1∼3 mm in diameter, appeared on basal stems. The pathogen formed both microconidia and macroconidia. Microconidia were formed abundantly in false-heads on short monophialides, oval to kidney-shaped. Macroconidia were slightly sickle-shaped, 3∼5-septated with an attenuated apical cell and a foot-shaped basal cell. Colony color on PDA was white, peach or purple. Chlamydospores were formed abundantly on PDA. The pathogen was able to cause stem rot symptoms to cactus by wound inoculation as well as non-wound inoculation.

  • PDF

Mycoherbicidal Potential of Phaeoacremonium italicum, A New Pathogen of Eichhornia crassipes Infesting Harike Wetland, India

  • Singh, Birinderjit;Saxena, Sanjai;Meshram, Vineet;Kumar, Maneek
    • Mycobiology
    • /
    • v.44 no.2
    • /
    • pp.85-92
    • /
    • 2016
  • Mycoherbicides are exclusive biotechnology products which offer a non-chemical solution to control noxious weeds on the land as well as aquatic in systems, viz a viz saving environment from hazardous impact of synthetic chemicals. The present paper highlights the mycobiota associated with Eichhornia crassipes infesting Harike wetland area of Punjab and evaluation of their pathogenic potential for futuristic application as a mycoherbicide. Of the 20 isolates tested by leaf detached assay and whole plant bioassays, only one isolate (#8 BJSSL) caused 100% damage to E. crassipes. Further, the culture filtrate of this isolate also exhibited a similar damage to the leaves in an in vitro detached leaf assay. The potential isolate was identified as Phaeoacremonium italicum using classical and modern molecular methods. This is the first report of P. italicum as a pathogen of E. crassipes and of its potential use as a biological control agent for the management of water hyacinth.

Nimbya scirpicola Causing Brown Spot of Bayonet-Gras (Scirpus maritimus) (매자기에 갈색무늬병(가칭)을 일으키는 Nimbya scirpicola)

  • 유승헌;윤해근;심형권
    • Korean Journal Plant Pathology
    • /
    • v.10 no.1
    • /
    • pp.61-63
    • /
    • 1994
  • A brown leaf and stem spot disease of bayonet-grass (Scirpus maritimus) was epidemic in reclaimed paddy fields of Chunbuk province, Korea. A fungal pathogen was repeatedly isolated from the necrotic lesions of the bayonet-grass and identified as Nimbya scirpicola. The pathogen induced disease symptoms only in bayonet-grass but not in 8 other plants tested; Brassica pathogen induced disease symptoms only in bayonet-grass but not in 8 other plants tested; Brassica compestris subsp. napus var. pekinensis, Cucumis sativus, Glycine max, Hordeum vulgare, Lycopersicon esculentum, Oryza sativa, Sesamum indicum and Triticum aestivum. The fungus has potential to be developed as a mycoherbicide.

  • PDF