• Title/Summary/Keyword: planning sizes

Search Result 181, Processing Time 0.024 seconds

A Comparison Analysis on the Facility Standards and Campus Sizes of the National Universities in Korea and Japan (한·일 국립대학 시설 기준 및 캠퍼스 면적 비교·분석)

  • Choi, Hyeong Ju
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.18 no.3
    • /
    • pp.1-15
    • /
    • 2019
  • This study analyzes universities in Japan, which haves many similarities with those in Korea in certain aspects of the educational system and a common problem of reduced university admission resources, Korea's national university facility standards, policy related to nation-level university facility, and practical campus case. Through this, the study aims to examine the difference in the national approach and basic philosophy about university facilities in Korea and Japan, and also identify the major planning factors and improvement directions when establishing plans for university campuses in the future. The results of this study are as follows. First, Korea tends to promote policies related to university facilities by individual projects centered on a major pending problem or issue, while Japan has been shown to promote national university facility policies under a comprehensive mid-to-long-term plan by establishing a maintenance plan aimed at national university facilities every five years. Second, In the case of the university facility areas, the average university facility area of the examined universities in Japan is about 5.6% larger than the average university facility area in Korea. Additionally, the university facility area per student in Japan is about 13% wider than that of Korea. The total floor area of university facilities in Japan is also about 20.7% larger than that of Korea, and the university facility area per student in Japan is about 56.7% wider than that of Korea as well. Among support facilities, the total floor area of dormitories in Korea was 2.5 times wider than that of Japan, however, the acceptance rate of dormitory in Korea was 5.6% higher than Japan. Third, the university facility criteria items and systems of two countries are similar. but there are slight differences in the content such as the method of calculating student capacity, division classification, and the method of calculating the number of teachers.

Effects of Functional Improvement of Multiaxis Flat Continuous Soil Cement Earth Retaining Wall (다축 평면 연속형 SCW 흙막이 벽체의 개선 효과)

  • Chung, Choong-Sub;Yoo, Chan Ho;Nam, Ho Seong;Choi, In Gyu;Baek, Seung Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.7-22
    • /
    • 2023
  • In January 2022, a new legislation was enforced to enhance the safety of underground construction. Consequently, a comprehensive assessment of underground safety is now an integral part of the planning process, including an evaluation of its impact. Ensuring the stability of temporary retaining walls during underground excavation has become paramount, prompting a heightened focus on the assessment of underground safety. This study delves into the analysis of the Multi-axis Flat Continuous Soil Cement Wall retaining wall (MFS) construction method. This method facilitates the expansion of wall thickness in the ground and provides flexibility in selecting and spacing H-piles. Through laboratory model tests, we scrutinized the load-displacement behavior of the wall, varying the H-pile installation intervals using the MFS method. Additionally, a 3-dimensional numerical analysis was conducted to explore the influence of H-pile installation intervals and sizes on the load for different thicknesses of the MFS retaining wall. The displacement analysis yielded the calculation of the height of the arching effect acting on the wall. To further our understanding, a design method was introduced, quantitatively analyzing the results of axial force and shear force acting on the wall. This involved applying the maximum arching height, calculated by the MFS method, to the existing member force review method. The axial force and shear force, contingent on the H-pile installation interval and size applied to the MFS retaining wall, demonstrated a reduction effect ranging from 24.6% to 62.9%.

Kidney Tumor Segmentation through Semi-supervised Learning Based on Mean Teacher Using Kidney Local Guided Map in Abdominal CT Images (복부 CT 영상에서 신장 로컬 가이드 맵을 활용한 평균-교사 모델 기반의 준지도학습을 통한 신장 종양 분할)

  • Heeyoung Jeong;Hyeonjin Kim;Helen Hong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.5
    • /
    • pp.21-30
    • /
    • 2023
  • Accurate segmentation of the kidney tumor is necessary to identify shape, location and safety margin of tumor in abdominal CT images for surgical planning before renal partial nephrectomy. However, kidney tumor segmentation is challenging task due to the various sizes and locations of the tumor for each patient and signal intensity similarity to surrounding organs such as intestine and spleen. In this paper, we propose a semi-supervised learning-based mean teacher network that utilizes both labeled and unlabeled data using a kidney local guided map including kidney local information to segment small-sized kidney tumors occurring at various locations in the kidney, and analyze the performance according to the kidney tumor size. As a result of the study, the proposed method showed an F1-score of 75.24% by considering local information of the kidney using a kidney local guide map to locate the tumor existing around the kidney. In particular, under-segmentation of small-sized tumors which are difficult to segment was improved, and showed a 13.9%p higher F1-score even though it used a smaller amount of labeled data than nnU-Net.

Evaluation of the Usefulness of MapPHAN for the Verification of Volumetric Modulated Arc Therapy Planning (용적세기조절회전치료 치료계획 확인에 사용되는 MapPHAN의 유용성 평가)

  • Woo, Heon;Park, Jang Pil;Min, Jae Soon;Lee, Jae Hee;Yoo, Suk Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.115-121
    • /
    • 2013
  • Purpose: Latest linear accelerator and the introduction of new measurement equipment to the agency that the introduction of this equipment in the future, by analyzing the process of confirming the usefulness of the preparation process for applying it in the clinical causes some problems, should be helpful. Materials and Methods: All measurements TrueBEAM STX (Varian, USA) was used, and a file specific to each energy, irradiation conditions, the dose distribution was calculated using a computerized treatment planning equipment (Eclipse ver 10.0.39, Varian, USA). Measuring performance and cause errors in MapCHECK 2 were analyzed and measured against. In order to verify the performance of the MapCHECK 2, 6X, 6X-FFF, 10X, 10X-FFF, 15X field size $10{\times}10$ cm, gantry $0^{\circ}$, $180^{\circ}$ direction was measured by the energy. IGRT couch of the CT values affect the measurements in order to confirm, CT number values : -800 (Carbon) & -950 (COUCH in the air), -100 & 6X-950 in the state for FFF, 15X of the energy field sizes $10{\times}10$, gantry $180^{\circ}$, $135^{\circ}$, $275^{\circ}$ directionwas measured at, MapPHAN allocated to confirm the value of HU were compared, using the treatment planning computer for, Measurement error problem by the sharp edges MapPHAN Learn gantry direction MapPHAN of dependence was measured in three ways. GANTRY $90^{\circ}$, $270^{\circ}$ in the direction of the vertically erected settings 6X-FFF, 15X respectively, and Setting the state established as a horizontal field sizes $10{\times}10$, $90^{\circ}$, $45^{\circ}$, $315^{\circ}$, $270^{\circ}$ of in the direction of the energy-6X-FFF, 15X, respectively, were measured. Without intensity modulated beam of the third open arc were investigated. Results: Of basic performance MapCHECK confirm the attenuation measured by Couch, measured from the measured HU values that are assigned to the MAP-PHAN, check for calculation accuracy for the angled edge of the MapPHAN all come in a range of valid measurement errors do not affect the could see. three ways for the Gantry direction dependence, the first of the meter built into the value of the Gantry $270^{\circ}$ (relative $0^{\circ}$), $90^{\circ}$ (relative $180^{\circ}$), 6X-FFF, 15X from each -1.51, 0.83% and -0.63, -0.22% was not affected by the AP/PA direction represented. Setting the meter horizontally Gantry $90^{\circ}$, $270^{\circ}$ from the couch, Energy 6X-FFF 4.37, 2.84%, 15X, -9.63, -13.32% the difference. By-side direction measurements MapPHAN in value is not within the valid range can not, because that could be confirmed as gamma pass rate 3% of the value is greater than the value shown. You can check the Open Arc 6X-FFF, 15X energy, field size $10{\times}10$ cm $360^{\circ}$ rotation of the dose distribution in the state to look at nearly 90% pass rate to emerge. Conclusion: Based on the above results, the MapPHAN gantry direction dependence by side in the direction of the beam relative dose distribution suitable for measuring the gamma value, but accurate measurement of the absolute dose can not be considered is. this paper, a more accurate treatment plan in order to confirm, Reduce the tolerance for VMAT, such as lateral rotation investigation in order to measure accurate absolute isodose using a combination of IMF (Isocentric Mounting Fixture) MapCHEK 2, will be able to minimize the impact due to the angular dependence.

  • PDF

The Evaluation of the dose calculation algorithm(AAA)'s Accuracy in Case of a Radiation Therapy on Inhomogeneous tissues using FFF beam (FFF빔을 사용한 불균질부 방사선치료 시 선량계산 알고리즘(AAA)의 정확성 평가)

  • Kim, In Woo;Chae, Seung Hoon;Kim, Min Jung;Kim, Bo Gyoum;Kim, Chan Yong;Park, So Yeon;Yoo, Suk Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.321-327
    • /
    • 2014
  • Purpose : To verify the accuracy of the Ecilpse's dose calculation algorithm(AAA:Analytic anisotropic algorithm) in case of a radiation treatment on Inhomogeneous tissues using FFF beam comparing dose distribution at TPS with actual distribution. Materials and Methods : After acquiring CT images for radiation treatment by the location of tumors and sizes using the solid water phantoms, cork and chest tumor phantom made of paraffin, we established the treatment plan for 6MV photon therapy using our radiation treatment planning system for chest SABR, Ecilpse's AAA(Analytic anisotropic algorithm). According to the completed plan, using our TrueBeam STx(Varian medical system, Palo Alto, CA), we irradiated radiation on the chest tumor phantom on which EBT2 films are inserted and evaluated the dose value of the treatment plan and that of the actual phantom on Inhomogeneous tissue. Results : The difference of the dose value between TPS and measurement at the medial target is 1.28~2.7%, and, at the side of target including inhomogeneous tissues, the difference is 2.02%~7.40% at Ant, 4.46%~14.84% at Post, 0.98%~7.12% at Rt, 1.36%~4.08% at Lt, 2.38%~4.98% at Sup, and 0.94%~3.54% at Inf. Conclusion : In this study, we discovered the possibility of dose calculation's errors caused by FFF beam's characteristics and the inhomogeneous tissues when we do SBRT for inhomogeneous tissues. SBRT which is most popular therapy method needs high accuracy because it irradiates high dose radiation in small fraction. So, it is supposed that ideal treatment is possible if we minimize the errors when planning for treatment through more study about organ's characteristics like Inhomogeneous tissues and FFF beam's characteristics.

Development of Model Plans in Three Dimensional Conformal Radiotherapy for Brain Tumors (뇌종양 환자의 3차원 입체조형 치료를 위한 뇌내 주요 부위의 모델치료계획의 개발)

  • Pyo Hongryull;Lee Sanghoon;Kim GwiEon;Keum Kichang;Chang Sekyung;Suh Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.1-16
    • /
    • 2002
  • Purpose : Three dimensional conformal radiotherapy planning is being used widely for the treatment of patients with brain tumor. However, it takes much time to develop an optimal treatment plan, therefore, it is difficult to apply this technique to all patients. To increase the efficiency of this technique, we need to develop standard radiotherapy plant for each site of the brain. Therefore we developed several 3 dimensional conformal radiotherapy plans (3D plans) for tumors at each site of brain, compared them with each other, and with 2 dimensional radiotherapy plans. Finally model plans for each site of the brain were decide. Materials and Methods : Imaginary tumors, with sizes commonly observed in the clinic, were designed for each site of the brain and drawn on CT images. The planning target volumes (PTVs) were as follows; temporal $tumor-5.7\times8.2\times7.6\;cm$, suprasellar $tumor-3\times4\times4.1\;cm$, thalamic $tumor-3.1\times5.9\times3.7\;cm$, frontoparietal $tumor-5.5\times7\times5.5\;cm$, and occipitoparietal $tumor-5\times5.5\times5\;cm$. Plans using paralled opposed 2 portals and/or 3 portals including fronto-vertex and 2 lateral fields were developed manually as the conventional 2D plans, and 3D noncoplanar conformal plans were developed using beam's eye view and the automatic block drawing tool. Total tumor dose was 54 Gy for a suprasellar tumor, 59.4 Gy and 72 Gy for the other tumors. All dose plans (including 2D plans) were calculated using 3D plan software. Developed plans were compared with each other using dose-volume histograms (DVH), normal tissue complication probabilities (NTCP) and variable dose statistic values (minimum, maximum and mean dose, D5, V83, V85 and V95). Finally a best radiotherapy plan for each site of brain was selected. Results : 1) Temporal tumor; NTCPs and DVHs of the normal tissue of all 3D plans were superior to 2D plans and this trend was more definite when total dose was escalated to 72 Gy (NTCPs of normal brain 2D $plans:27\%,\;8\%\rightarrow\;3D\;plans:1\%,\;1\%$). Various dose statistic values did not show any consistent trend. A 3D plan using 3 noncoplanar portals was selected as a model radiotherapy plan. 2) Suprasellar tumor; NTCPs of all 3D plans and 2D plans did not show significant difference because the total dose of this tumor was only 54 Gy. DVHs of normal brain and brainstem were significantly different for different plans. D5, V85, V95 and mean values showed some consistent trend that was compatible with DVH. All 3D plans were superior to 2D plans even when 3 portals (fronto-vertex and 2 lateral fields) were used for 2D plans. A 3D plan using 7 portals was worse than plans using fewer portals. A 3D plan using 5 noncoplanar portals was selected as a model plan. 3) Thalamic tumor; NTCPs of all 3D plans were lower than the 2D plans when the total dose was elevated to 72 Gy. DVHs of normal tissues showed similar results. V83, V85, V95 showed some consistent differences between plans but not between 3D plans. 3D plans using 5 noncoplanar portals were selected as a model plan. 4) Parietal (fronto- and occipito-) tumors; all NTCPs of the normal brain in 3D plans were lower than in 2D plans. DVH also showed the same results. V83, V85, V95 showed consistent trends with NTCP and DVH. 3D plans using 5 portals for frontoparietal tumor and 6 portals for occipitoparietal tumor were selected as model plans. Conclusion : NTCP and DVH showed reasonable differences between plans and were through to be useful for comparing plans. All 3D plans were superior to 2D plans. Best 3D plans were selected for tumors in each site of brain using NTCP, DVH and finally by the planner's decision.

Comparisons between the Two Dose Profiles Extracted from Leksell GammaPlan and Calculated by Variable Ellipsoid Modeling Technique (렉셀 감마플랜(LGP)에서 추출된 선량 분포와 가변 타원체 모형화기술(VEMT)에 의해 계산된 선량 분포 사이의 비교)

  • Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • A high degree of precision and accuracy in Gamma Knife Radiosurgery(GKRS) is a fundamental requirement for therapeutical success. Elaborate radiation delivery and dose gradients with the steep fall-off of radiation are clinically applied thus necessitating a dedicated Quality Assurance(QA) program in order to guarantee dosimetric and geometric accuracy and reduce all the risk factors that can occur in GKRS. In this study, as a part of QA we verified the accuracy of single-shot dose profiles used in the algorithm of Gamma Knife Perfexion(PFX) treatment planning system employing Variable Ellipsoid Modeling Technique(VEMT). We evaluated the dose distributions of single-shots in a spherical ABC phantom with diameter 160 mm on Gamma Knife PFX. The single-shots were directed to the center of ABC phantom. Collimating configurations of 4, 8, and 16 mm sizes along x, y, and z axes were studied. Gamma Knife PFX treatment planning system being used in GKRS is called Leksell GammaPlan(LGP) ver 10.1.1. From the verification like this, the accuracy of GKRS will be doubled. Then the clinical application must be finally performed based on precision and accuracy of GKRS. Specifically the width at the 50% isodose level, that is, Full-Width-of-Half-Maximum(FWHM) was verified under such conditions that a patient's head is simulated as a sphere with diameter 160mm. All the data about dose profiles along x, y, and z axes predicted through VEMT were excellently consistent with dose profiles from LGP within specifications(${\leq}1mm$ at 50% isodose level) except for a little difference of FWHM and PENUMBRA(isodose level: 20%~80%) along z axis for 4 mm and 8mm collimating configurations. The maximum discrepancy of FWHM was less than 2.3% at all collimating configurations. The maximum discrepancy of PENUMBRA was given for the 8 mm collimator along z axis. The difference of FWHM and PENUMBRA in the dose distributions obtained with VEMT and LGP is too small to give the clinical significance in GKRS. The results of this study are considered as a reference for medical physicists involved in GKRS in the whole world. Therefore we can work to confirm the validity of dose distributions for all collimating configurations determined through the regular preventative maintenance program using the independent verification method VEMT for the results of LGP and clinically assure the perfect treatment for patients of GKRS. Thus the use of VEMT is expected that it will be a part of QA that can verify and operate the system safely.

Evaluation of Metal Volume and Proton Dose Distribution Using MVCT for Head and Neck Proton Treatment Plan (두경부 양성자 치료계획 시 MVCT를 이용한 Metal Volume 평가 및 양성자 선량분포 평가)

  • Seo, Sung Gook;Kwon, Dong Yeol;Park, Se Joon;Park, Yong Chul;Choi, Byung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.25-32
    • /
    • 2019
  • Purpose: The size, shape, and volume of prosthetic appliance depend on the metal artifacts resulting from dental implant during head and neck treatment with radiation. This reduced the accuracy of contouring targets and surrounding normal tissues in radiation treatment plan. Therefore, the purpose of this study is to obtain the images of metal representing the size of tooth through MVCT, SMART-MAR CT and KVCT, evaluate the volumes, apply them into the proton therapy plan, and analyze the difference of dose distribution. Materials and Methods : Metal A ($0.5{\times}0.5{\times}0.5cm$), Metal B ($1{\times}1{\times}1cm$), and Metal C ($1{\times}2{\times}1cm$) similar in size to inlay, crown, and bridge taking the treatments used at the dentist's into account were made with Cerrobend ($9.64g/cm^3$). Metal was placed into the In House Head & Neck Phantom and by using CT Simulator (Discovery CT 590RT, GE, USA) the images of KVCT and SMART-MAR were obtained with slice thickness 1.25 mm. The images of MVCT were obtained in the same way with $RADIXACT^{(R)}$ Series (Accuracy $Precision^{(R)}$, USA). The images of metal obtained through MVCT, SMART-MAR CT, and KVCT were compared in both size of axis X, Y, and Z and volume based on the Autocontour Thresholds Raw Values from the computerized treatment planning equipment Pinnacle (Ver 9.10, Philips, Palo Alto, USA). The proton treatment plan (Ray station 5.1, RaySearch, USA) was set by fusing the contour of metal B ($1{\times}1{\times}1cm$) obtained from the above experiment by each CT into KVCT in order to compare the difference of dose distribution. Result: Referencing the actual sizes, it was appeared: Metal A (MVCT: 1.0 times, SMART-MAR CT: 1.84 times, and KVCT: 1.92 times), Metal B (MVCT: 1.02 times, SMART-MAR CT: 1.47 times, and KVCT: 1.82 times), and Metal C (MVCT: 1.0 times, SMART-MAR CT: 1.46 times, and KVCT: 1.66 times). MVCT was measured most similarly to the actual metal volume. As a result of measurement by applying the volume of metal B into proton treatment plan, the dose of $D_{99%}$ volume was measured as: MVCT: 3094 CcGE, SMART-MAR CT: 2902 CcGE, and KVCT: 2880 CcGE, against the reference 3082 CcGE Conclusion: Overall volume and axes X and Z were most identical to the actual sizes in MVCT and axis Y, which is in the superior-Inferior direction, was regular in length without differences in CT. The best dose distribution was shown in MVCT having similar size, shape, and volume of metal when treating head and neck protons. Thus it is thought that it would be very useful if the contour of prosthetic appliance using MVCT is applied into KVCT for proton treatment plan.

A Study on Soil Characteristics of Poorly Vegetation Space for Landscape Remodeling Planning on Apartment Complex (아파트 조경 식생불량공간 리모델링 설계를 위한 토양특성 연구)

  • Han, Seung-Won;Kim, Kwang Jin;Yun, Ji Hye;Jeong, Na Ra;You, Soo Jin
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.1
    • /
    • pp.85-92
    • /
    • 2020
  • The purpose of this study is to provide base information that can be utilized in surveying the status of landscape management within apartment complexes and grasping the conditions of the soil for planting plants, as a way to improve the quality of green spaces by repairing poorly vegetated spaces within apartment complexes and remodeling them with diverse species of plants. Considering that trees and shrubs of equal sizes are simultaneously planted upon the completion of apartment complexes, they were divided based on their completion year at the interval of 5 years and differences in the growth of trees and the components of soil over time were analyzed. Out of the species of trees planted in all the 9 apartment complexes surveyed in this study, the growth of 4 species of needleleaf trees and 4 species of broadleaf trees were surveyed. Juniperus chinensis 'Kaizuka' and Pinus densiflora Siebold & Zucc. out of the needleleaf trees and Malus floribunda Siebold ex Van Houtte out of the broadleaf trees showed the highest growth rate when over 5 years passed after planting and their growth rate decreased when over 10 years passed. Platycladus orientalis and Acer palmatum Thunb. in the apartment complexes that were built over 10 years ago showed the highest growth rate, which indicates that the species require a relatively long period of time for growth. The hardness of the soil at the areas where trees were planted but their soil surface was bare was analyzed. When over 5 years passed after the completion of apartment complexes, over 20 mm of the soil was found to be stamped. The physicochemical properties of soil were also surveyed and the pH level was found to have been continuously high ever since the completion. The organic content in the surveyed soil was about 1/3 of the content in fertile soil, which means that additional fertilization is required. These results indicate that the stamped soil and the health of soil can be restored, when replanting plants in bare areas, by adding plans to improve soil, such as designing drain ways around the planted areas, transporting soil for the 50 cm depth of the ground and mixing organic matters such as chaff, and simply by planting groundcover plants in the lower part of tress and shrubs.

Dosimetric Characterization of an Ion Chamber Matrix for Intensity Modulated Radiation Therapy Quality Assurance (세기변조방사선치료 선량분포 확인을 위한 2차원적 이온전리함 배열의 특성분석)

  • Lee, Jeong-Woo;Hong, Se-Mie;Kim, Yon-Lae;Choi, Kyoung-Sik;Jung, Jin-Beom;Lee, Doo-Hyun;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.17 no.3
    • /
    • pp.131-135
    • /
    • 2006
  • A commercial ion chamber matrix was examined the characteristics and its performance for radiotherapy qualify assurance. The device was the I'mRT 2D-MatriXX (Scanditronix-Wellhofer, Schwarzenbruck, Germany). The 2D-MatriXX device consists of a 1020 vented ion chamber array, arranged in $24{\times}24cm^2$ matrix. Each ion chamber has a volume of $0.08cm^3$, spacing of 0.762 cm and minimum sampling time of 20 ms. For the investigation of the characteristics, dose linearity, output factor, short-term reproducibility and dose rate dependency were tested. In the testing of dose linearity. It has shown a good signal linearity within 1% in the range of $1{\sim}800$cGy. Dose rate dependency was found to be lower than 0.4% (Range: 100-600 Mu/min) relative to a dose rate of 300 Mu/min as a reference. Output factors matched very well within 0.5% compared with commissioned beam data using a ionization chamber (CC01, Scanditronix-Wellhofer, Schwarzenbruck, Germany) in the range of field sizes $3{\times}3{\sim}24{\times}24cm^2$. Short-term reproducibility (6 times with a interval of 15 minute) was also shown a good agreement within 0.5%, when the temperature and the pressure were corrected by each time of measurement. in addition, we compared enhanced dynamic wedge (EDW, Varian, Palo Alto, USA) profiles from calculated values in the radiation planning system with those from measurements of the MatriXX. Furthermore, anon-uniform IMRT dose fluence was tested. All the comparison studies have shown good agreements. In this study, the MatriXX was evaluated as a reliable dosimeter, and it could be used as a simplistic and convenient tool for radiotherapy qualify assurance.

  • PDF