• Title/Summary/Keyword: planktonic ciliates

Search Result 21, Processing Time 0.023 seconds

Ingestion on Planktonic Ciliates by Copepod Acartia hongi: A Laboratory Study (섬모충류에 대한 요각류 Acartia hongi의 섭식: 실험실 연구)

  • Yang, Eun-Jin;Choi, Joong-Ki
    • Ocean and Polar Research
    • /
    • v.31 no.3
    • /
    • pp.265-276
    • /
    • 2009
  • Acartia hongi is the most dominant and widespread planktonic copepod in Gyeonggi Bay, Yellow sea. Ingestion rates and selectivity of A. hongi on phytoplankton and planktonic ciliates were determined in the laboratory. Ingestion rates of A. hongi on planktonic ciliates and phytoplankton increased in proportion to prey concentration increase. When A. hongi was fed with various mixture combinations of planktonic ciliates and phytoplankton, their ingestion rate on ciliates tended to increase as the percentage of ciliates in prey biomass increased. Clearance rate of A. hongi on planktonic ciliates was higher than for phytoplankton in all experiments without regard to relative percent of ciliate biomass. This trend suggests that A. hongi was preferentially preying on planktonic ciliates. Under mixed prey availability, it is likely that selective feeding and higher clearance rate of planktonic ciliates by A. hongi is related to the higher nutritional value of ciliates compared to phytoplankton. Therefore, our results suggest that selective ciliate feeding by A. hongi will positively benefit its growth and abundance, and as a result negatively impact the population dynamics of planktonic ciliates in Gyeonggi Bay.

Influence of Mesozooplankton on the Grazing Pressure of Planktonic Ciliates in Sihwa Lake During Summer (시화호에서 하계 섬모충류의 초식압에 미치는 중형동물플랑크톤의 영향)

  • Hong, Hyun Pyo;Choi, Joong Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.4
    • /
    • pp.265-271
    • /
    • 2014
  • We performed dilution experiments together with copepod added incubations to examine the influence of mesozooplankton on the grazing pressure of planktonic ciliates in Sihwa lake during summer when the abundances of phytoplankton and mesozooplankton increased considerably. Planktonic ciliates consumed 104% of primary production in a day on dilution experiments. However, the ciliates consumption on phytoplankton was reduced to 19% in copepod incubations with Acartia sinjiensis added. This was due to selective predation of A. sinjiensis on oligotrich ciliates ($>20{\mu}m$) which were major grazers on nano-phytoplankton. Our experiments show that grazing pressure of planktonic ciliates based on dilution experiments may be overestimated when the abundance of planktonic ciliates is strongly controlled by copepods. We postulate that the role of planktonic ciliates as grazers could diminish in Sihwa lake in spring and summer when abundance of copepods increase considerably. We suggest that the predation of mesozooplankton should be considered to better appraise the role of planktonic ciliates as grazers.

First Record of Two Marine Planktonic Ciliates Rimostrombidium orientale and R. veniliae (Ciliophora: Choreotrichida) from Korea

  • Lee, Kyu-Chul;Choi, Joong-Ki;Kim, Sun-Young;Yang, Eun-Jin
    • Animal Systematics, Evolution and Diversity
    • /
    • v.22 no.2
    • /
    • pp.217-221
    • /
    • 2006
  • Two marine planktonic ciliates are investigated by using protargol impregnated techniques. These are Rimostrombidium orientale Song and Bradbury, 1998 and R. veniliae Montagnes and Taylor, 1994. Both species are new to Korean waters.

The Distribution of Planktonic Protists Along a Latitudinal Transect in the Northeast Pacific Ocean (북동 태평양수역에서 위도에 따른 부유 원생동물의 분포)

  • Yang, Eun-Jin;Choi, Joong-Ki;Kim, Woong-Seo
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.287-298
    • /
    • 2004
  • As a part of Korea Deep Ocean Study program, we investigated the distribution of planktonic protists in the upper 200 m of the northeast Pacific from $5^{\circ}N$ to $17^{\circ}N$, along $131^{\circ}30'W$. Area of divergence was formed at $9^{\circ}N$ which is boundaries of the north equatorial counter current (NECC) and the north equatorial current (NEC) during this cruise. Chlorophyll-a concentration was higher in NECC than in NEC area. Pico chl-a(<$2\;{\mu}m$) to total chl-a accounted for average 89% in the study area. The contribution of pico chl-a to total chl-a was relatively high in NEC area than in NECC area. Biomass of planktonic protists, ranging from 635.3 to $1077.3\;mgC\;m^{-2}$(average $810\;mgC\;m^{-2}$), was most enhanced in NECC area and showed distinct latitudinal variation. Biomass of HNF ranged from 88.7 to $208.3\;mgC\;m^{-2}$ and comprised 15% of planktonic protists. Biomass of ciliates ranged from 123.6 to $393.0\;mgC\;m^{-2}$ and comprised 25% of planktonic protists. Biomass of HDF ranged from 407.2 to $607.8\;mgC\;m^{-2}$ and comprised 60% of planktonic protists. HDF was the most dominant component in both NECC and NEC areas. Nano-protist biomass accounted for more than 50% of total protists in the both areas. The contribution of nanoprotist to total protists biomass was relatively higher in NEC area than in NECC. The biomass of planktonic protists was significantly correlated with phytoplankton biomass in this study area. The size structure of phytoplankton biomass coincided with that of planktonic protists. This suggested that the structure of the planktonic protists community and the microbial food web were dependent on the size structure of the phytoplankton biomass. However, biomass and size structure of planktonic protist communities might be significantly influenced by physical characteristics of the water column and food concentration in this study area.

Practical Approach for Quantitative and Qualitative Analyses of Marine Ciliate Plankton (해양 섬모충플랑크톤 정량과 정성분석의 현실적 접근)

  • KIM, YOUNG OK;KIM, SUN YOUNG;CHOI, JUNGMIN;KIM, JAESEONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.3
    • /
    • pp.248-262
    • /
    • 2021
  • Marine planktonic ciliates include two major groups, loricated tintinnids and naked oligotrichs. The study of marine ciliate plankton in Korea began with taxonomic efforts on tintinnids based on the morphology of lorica, a vase-shaped shell. Despite polymorphism in the lorica, it is utilized as a key characteristic in identification of tintinnid species. However, oligotrichs have been studied only recently in Korea due to challenges associated with the observation of ciliary arrangements and the technical development for cell staining. Species diversity and phylogenetic classification of the ciliates have been informed by recent advances in morphological and molecular analyses. Illustrations of the planktonic ciliate in Korea have been published on the basis of taxonomic data of tintinnids and oligotrichs. Planktonic ciliates acting as the major consumers of pico- and nanoplankton as well as the prey of mesozooplankton, has been monitored by spatial and temporal investigations in Korean coastal waters. A practical approach addressing the limitations and potential of marine ciliate studies in Korea is proposed here to improve the data quality of planktonic ciliates, providing an enhanced basis for quality control of ciliate monitoring.

Seasonal Variations and Species Composition of Planktonic Ciliates in the Southern Coastal Waters of Jeju Island, Korea (제주도 남부해역의 부유성 섬모충류의 종 조성과 계절 변동)

  • 김요혜;이준백
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.59-69
    • /
    • 2003
  • As part of study on the microbial food web in the southern Jeju Island of Korea, Planktonic tintinnids and aloricate oligotrichs were investigated from July 1998 to June 2000 to understand seasonal variation and water mass indication with environmental factors. 39 species of tintinnids were identified representing 1 order, 11 families, 20 genera. Tintinnid abundance ranged from 100 to 5,400 cells.1$^{-1}$ (mean 314 cells.1$^{-1}$ ), and oceanic species were mainly dominant in fall and winter season, while neritic species were a little pre- dominant in spring and summer season. 15 species of aloricate oligotrichs were identified representing 1 order, 5 families, 7 genera, and many belonged to genus Strombidium which was most abundant and most frequently occurred in many months. Abundance of aloricate oligotrichs ranged from 140 to 21,000 cells.1$^{-1}$ (mean 2,356 cells.1$^{-1}$ ). Species diversity and standing crops of tintinnids were quite different according to seasons, but few seasonal variations were detected in aloricate oligotrichs. In terms of water mass indication tintinnids represented obvious characteristics which were affected by marine environmental factors, but alor- icate oligotrichs had no such apparent indication as tintinnids. Ciliates were more abundant and more diverse in inshore than in offshore station. Total carbon biomass of ciliates ranged from 0.01 to 136.06 $\mu\textrm{g}$C.1$^{-1}$ (mean 5.01 $\mu\textrm{g}$C.1$^{-1}$ ). The carbon biomass, however, did not coincided with seasonal variations of abun- dance Vertical profiles of mean abundance of both tintinnids and aloricate oligotrichs were similar, and had same trend as those of mean chlorophyll o concentration. It suggests that phytoplankton and ciliates reflected the prey-predator relationship in the study area.

Seasonal Succession of Planktonic Ciliate in Kyungan Stream of Lake Paldang, Korea (팔당호 유입부 경안천의 섬모충 플랑크톤 계절적 분포)

  • Moon, Eun-Young;Kim, Young-Ok;Kong, Dong-Soo;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.11-18
    • /
    • 2008
  • Seasonal succession and community composition of planktonic ciliates were studied in Kyungan Stream from December 2000 to December 2001. Oligotrichs accounted for 53% of total ciliates. Total abundance of ciliates peaked in spring (30 March, 6 April) and in summer (8 June, 20 July) reaching values up to $1.9\times10^4$ cells $L^{-1}$. Seasonal succession of dominant species occurred obviously. Large-sized $(>50{\mu}m)$ species (Stylonychia sp1, Phascolodon vorticella and Codonella cratera) dominanted from winter to spring. Small sized $(<30{\mu}m)$ species (Vorticella spp., Rimostrombidium hyalinum and Halteria grandinella) dominanted in summer and autumn. Total abundance of large-sized species coincided with the Chl-${\alpha}$ concencetation during the study (r=0.33, p<0.05, n=39). Among the small-sized species Halteria grandinella was a significant relationship with bacterial abundance (r=0.35, p<0.05, n=39).

The Effects of Nonylphenol on Freshwater Phytoplankton and Zooplankton Communities

  • Katano, Toshiya;Park, Chong-Sung;Baek, Seung-Ho;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.449-456
    • /
    • 2008
  • Recent studies reveal that the endocrine disrupter nonylphenol can also influence the growth of planktonic organisms. To clarify the effect of nonylphenol on the whole planktonic community, we monitored planktonic abundances after addition of nonylphenol using small-scale microcosms in a laboratory. Nonylphenol was added at final concentrations of 1.25 and $2.5{\mu}g\;L^{-1}$, close to the EC50 for the growth of the rotifer, Brachionus calyciflorus. Chlorophyll $\alpha$ concentration increased significantly between 2 to 5 days after nonylphenol treatment compared to the control. The abundance of the predominant phytoplankton, Stephanodiscus hantzschii, followed the same pattern as chlorophyll a concentration. While there was no negative effect on the abundance of ciliates and rotifers, crustacean zooplankton abundance was higher in nonylphenol treatments. Although the relationship did not reach significance, the growth rate of rotifers tended to decline with increasing nonylphenol dosing. It is likely that the decreased rotifer grazing on S. hantzschii caused significant increase in their abundance. This study emphasizes the importance of considering indirect effects of environmental pollutants when predicting the response of biological community to toxicant exposure.

Effects of an Artificial Breakwater on the Distributions of Planktonic Microbial Communities

  • Kim, Young-Ok;Yang, Eun-Jin;Kang, Jung-Hoon;Shin, Kyoung-Soon;Chang, Man;Myung, Cheol-Soo
    • Ocean Science Journal
    • /
    • v.42 no.1
    • /
    • pp.9-17
    • /
    • 2007
  • The summer distributions of planktonic microbial communities (heterotrophic and phtosynthetic bacteria, phtosynthetic and heterotrophic nanoflagellates, ciliate plankton, and microphytoplankton) were compared between inner and outer areas of Lake Sihwa, divided by an artificial breakwater, located on the western coast of Korea, in September 2003. The semi-enclosed, inner area was characterized by hyposaline surface water (<17 psu), and by low concentrations of dissolved oxygen (avg. $0.4\;mg\;L^{-1}$) and high concentrations of inorganic nutrients (nitrogenous nutrients $>36\;{\mu}M$, phosphate $>4\;{\mu}M$) in the bottom layer. Higher densities of heterotrophic bacteria and nanoflagellates also occurred in the inner area than did in the outer area, while microphytoplankton (mainly diatoms) occurred abundantly in the outer area. A tiny tintinnid ciliate, Tintinnopsis nana, bloomed into more than $10^6\;cells\;L^{-1}$ at the surface layer of the inner area, while its abundance was much lower ($10^3-10^4\;cells\;L^{-1}$) in the outer area of the breakwater. Ciliate abundance was highly correlated with heterotrophic bacteria (r = 0.886, p < 0.001) and heterotrophic flagellates (r = 0.962, p < 0.001), indicating that rich food availability may have led to the T. nana bloom. These results suggest that the breakwater causes the eutrophic environment in artificial lakes with limited flushing of enriched water and develops into abundant bacteria, nanoflagellates, and ciliates.