• Title/Summary/Keyword: planetary gear set

Search Result 32, Processing Time 0.019 seconds

Analysis of the Power for a Decanter-Type Centrifuge (II) - Total Power and the Power-Transmission Mechanism - (Decanter형 원심분리기의 동력 계산 (II) - 총동력과 동력전달 기구 -)

  • Suh, Yong-Kweon;Han, Geun-Jo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.938-947
    • /
    • 2003
  • In this paper, we derived the formula for estimating the power of the electric motors needed to operate the Decanter-type centrifuge. In the derivation of the formula the sludge-removal torque is to be supplied from the formula derived in the first paper. The intricate nature of the transmission mechanism in the planetary gear trains of the sludge-removal power and torque has been clarified in this second paper. In particular we considered two-motor system, where the main motor drives the machine while the differential-speed control motor plays the role of braking in adjusting the differential speed. Sample calculation for the specific design treated in the first paper showed that the selection criterion for the main motor depends on the lower limit of the differential speed; when the lower limit is set low, it should be selected based on the steadily operating power, while it should be selected based on the starting power when the lower limit is set high. The total power required by both the main motor and the differential-speed control motor increases as the differential speed is decreased. It is suggested that the power loss in the differential-speed control motor could be minimized by attaching an electric generator to it.

DEVELOPMENT OF A CONTINUOUSLY VARIABLE-SPEED TRANSMISSION FOR AGRICULTURAL TRACTOR

  • Kim, H. J.;Kim, E. H.;K. H. Ryu
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.162-169
    • /
    • 2000
  • This study was carried out to develop a continuously variable-speed transmission(CVT) for agricultural tractor. A full-toroidal CVT mechanism with four discs and six rollers was selected as a device for changing speed ratio continuously. In the step of system layout design, the sizes of roller cylinders and end-load cylinder, which were critical factors for controlling the variator, were designed. Also the control pressure range was designed to limit the contact pressure of variator. In order to make the maximum speed of vehicle as 30km/h, the planetary gear and the six pairs of gears were designed. Also the hydraulic clutch, silent chain, hydraulic manifold and electronic controller were designed. After the design, a prototype with CVT controller was developed and tested. The speed of vehicle was changed continuously to the speed set by driver and the settling time was about 0.52 second at the step-response test (reduction ratio of variator 2.0 to 1.0), which was acceptable as a response time for working with tractor.

  • PDF