• Title/Summary/Keyword: plane parallel chamber

Search Result 22, Processing Time 0.026 seconds

Comparison of Dosimetry Protocols in High Energy Electron Beams (고에너지 전자선에 대한 표준측정법간의 비교)

  • 박성용;서태석;김회남;신동오;지영훈;군수일;이길동;추성실;최보영
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.267-276
    • /
    • 1998
  • Any detector inserted into a phantom should have such a geometry that it caused as small as possible perturbation of the electron fluence. Plane parallel chambers meet this requirement better than other chambers of configurations. IAEA protocol recommends the use of plane parallel chambers for this reason. However, the cylindrical chambers are widely used for convenient. The purpose of this study is to evaluate the absorbed dose due to the differences of four different dosimetry protocols such as IAEA protocol using cylindrical chamber, TG 21 protocol using cylindrical chamber, Markus protocol using plane parallel chamber, and TG 39 report for the calibration of plane parallel chamber in electron beams. Depth-ionization measurements for the electron beams of nominal energy 6, 9, 12, 15, and 18 MeV from Siemens accelerator with a 10$\times$10 cm$^2$ field size were made using a radiation field analyser with 0.125 cc ion chamber. Dosimetric measurements by IAEA and TG 21 protocol were made with a farmer type ionization chamber in solid water for each electron energy, respectively. Dosimetric measurements by Markus protocol were made with a plane parallel ionization chamber in solid water for each electron energy, respectively. The cavity-gas calibration factor for the plane parallel chamber was obtained with the use of 18 MeV electron beam as guided by TG 39 report. Dosimetric measurements by TG 39 were performed with a plane parallel ionization chamber in solid water for each electron energy, respectively. For all the energies and protocols, measurements were made along the central axis of the distance of 100 cm (SSD = 100 cm) with 10$\times$10 cm$^2$ field size at the depth of d$_{max}$ for each electron beam, respectively. In the case of 18 MeV, the discrepancy of 0.9 % between IAEA and TG 21 was found and the two protocols were agreed within 0.7 % for other energies. In the case of 18 MeV and 6 MeV, the discrepancies of $\pm$ 0.8 % between Markus and TG 39 was found, respectively and the two protocols were agreed within 0.5 % for other energies. Since the discrepancy of 1.6 % between cylindrical and plane parallel chamber was found for 18 MeV, it is suggested to get the calibration factor using other method as guided. by TG 39.9.

  • PDF

Study on Absorbed Dose Determination of Electron Beam Quality for Cross-calibration with Plane-parallel Ionization Chamber (평행평판형이온함의 교차교정 시 전자선 선질에 따른 흡수선량 결정에 대한 연구)

  • Rah, Jeong-Eun;Shin, Dong-Oh;Park, So-Hyun;Jeong, Ho-Jin;Hwang, Ui-Jung;Ahn, Sung-Hwan;Lim, Young-Kyung;Kim, Dong-Wook;Yoon, Myong-Geun;Shin, Dong-Ho;Lee, Se-Byeong;Suh, Tae-Suk;Park, Sung-Yong
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.97-105
    • /
    • 2009
  • Absorbed dose to water based protocols recommended that plane-parallel chambers be calibrated against calibrated cylindrical chambers in a high energy electron beam with $R_{50}$>7 $g/cm^2$ (E${\gtrsim}$16 MeV). However, such high-energy electron beams are not available at all radiotherapy centers. In this study, we are compared the absorbed dose to water determined according to cross-calibration method in a high energy electron beam of 16 MeV and in electron beam energies of 12 MeV below the cross-calibration quality remark. Absorbed dose were performed for PTW 30013, Wellhofer FC65G Farmer type cylindrical chamber and for PTW 34001, Wellhofer PPC40 Roos type plane-parallel chamber. The cylindrical and the plane-parallel chamber to be calibrated are compared by alternately positioning each at reference depth, $Z_{ret}=0.6R_{50}-0.1$ in water phantom. The $D_W$ of plane-parallel chamber are derived using across-calibration method at high-energy electron beams of 16, 20 MeV. Then a good agreement is obtained the $D_W$ of plane-parallel chamber in 12 MeV. The agreement between 20 MeV and 12 MeV are within 0.2% for IAEA TRS-398.

  • PDF

Determination of Quality Correction Factors for a Plane-Parallel Chamber in High Energy Electron Beams using Monte Carlo Calculation (몬테칼로 계산을 이용한 평판형 전리함의 고에너지 전자선에 대한 선질보정인자 결정)

  • Jeong, Dong-Hyeok;Lee, Jeong-Ok
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.89-95
    • /
    • 2008
  • The quality correction factor for used beam and qualities is strongly required for clinical dosimetry by TRS-398 protocol of IAEA. In this study the quality correction factors for a commercial plane-parallel ionization chamber in high energy electron beams were calculated by Monte Carlo code(DOSRZnrc/EGSnrc). In comparison of quality correction factor, the difference between this study and TRS-398 were within 1% in 5-20 MeV. In case of 4MeV the difference was 1.9%. As an independent method of determination of quality correction factor this study can be applied to evaluate values in the protocol or calculate the factor for a new chamber.

  • PDF

Comparison of Air Kerma­based and Absorbed Dose to Water­based Protocols in the Dosimetry of High Energy Electron Beams (고 에너지 전자선에 대한 공기커마와 물 흡수선량에 기반한 프로토콜간의 비교)

  • 박창현;신동오;박성용
    • Progress in Medical Physics
    • /
    • v.14 no.4
    • /
    • pp.249-258
    • /
    • 2003
  • A few years ago, a proposal was made to change the dosimetry from the air kerma-based reference dosimetry to the absorbed dose-based reference dosimetry for all radiotherapy beams of ionizing radiation to improve the accuracy of dosimetry. Here, we present a dosimetry study in which the two most widespread absorbed dose­based protocols (IAEA TRS­398 and AAPM TG­51) were compared with an air kerma­based protocol (IAEA TRS-277) by measuring the absorbed dose in the same reference depth. Measurements were performed in three clinical electron beam energies using a PTW 30002 cylindrical chamber, and Markus and Roos plane­parallel chambers. $^{60}$ Co calibration factors were obtained from the KFDA. The absorbed dose differences between the air kerma­based and absorbed dose­based protocols were within 2.0% for all chambers in all beams. The results thus show that the obtained absolute dose values will be not significantly altered by changing from the air kerma­based dosimetry to the absorbed dose­based dosimetry. It was also shown that absorbed dose values between the absorbed dose­based protocols agreed by deviations of less than 0.5% for a cylindrical chamber and less than 0.7% for plane­parallel chambers using cross­calibration factors. Although the use of a cylindrical chamber and plane­parallel chambers resulted in a difference of less than 2% for all situations investigated here, to reduce errors, the plane­parallel chambers are recommended for electron energies in which the use of cylindrical chamber is not permitted in each protocol.

  • PDF

야외시험장의 구성 및 평가

  • 정연춘
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.2
    • /
    • pp.69-78
    • /
    • 1991
  • 전자파장해 측정에 사용되는 대표적인 측정시설에는 접지면(ground plane)을 갖춘 야외시험장 (open area test site), 전자파반무향실(semianechoic chamber), TEM(transverse Electromagnetic) cell, 평행판선로(parallel plate line), 헬름홀츠코일(Helmholtz coil), 전자파잔향실(reverberating chamber) 등이 있으며, 이러한 시설은 시험대상기기의 크기, 주파수대역, 적용규격의 규제치, 측정하고자 하는 전자기장의 형태 및 편파면, 그리고 시험신호의 전기적 특성(주파수영역 또는 시간영역) 등을 고려하여 선택되고 구성되 어야 한다. 실제로 시험장소를 건설하는데 막대한 비용이 소요되고, 큰 측정오차를 유발시킬 수 있기 때문에 매우 신중 하게 설계, 구성하여야 한다.

  • PDF

Wideband Suppression of Radiated Emissions from a Power Bus in High-Speed Printed Circuit Boards

  • Shim, Yujeong;Kim, Myunghoi
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.3
    • /
    • pp.184-190
    • /
    • 2016
  • We present experimental demonstrations of electromagnetic bandgap (EBG) structures for the wideband suppression of radiated emissions from a power bus in high-speed printed circuit boards (PCBs). In most of the PCB designs, a parallel plate waveguide (PPW) structure is employed for a power bus. This structure significantly produces the wideband-radiated emissions resulting from parallel plate modes. To suppress the parallel plate modes in the wideband frequency range, the power buses based on the electromagnetic bandgap structure with a defected ground structure (DGS) are presented. DGSs are applied to a metal plane that is connected to a rectangular EBG patch by using a via structure. The use of the DGS increases the characteristic impedance value of a unit cell, thereby substantially improving the suppression bandwidth of the radiated emissions. It is experimentally demonstrated that the DGS-EBG structure significantly mitigates the radiated emissions over the frequency range of 0.5 GHz to 2 GHz as compared to the PPW.

Visualization of Interacting Parallel Supersonic Free Jets using NO-LIF

  • Niimi Tomohide;Ishida Toshihiko
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.36-43
    • /
    • 2001
  • The flow field structures of two interacting parallel supersonic free jets are studied by flow visualization using planar laser-induced fluorescence of NO seeded in nitrogen gas. The experiments are carried out for several distances between two orifice centers and for various ratios of the pressure in the reservoir to that in the expansion chamber. The flow fields are visualized mainly on the plane including two jet centerlines and its characteristic shock system, especially a cell structure formed secondly by interaction of two jets, are analyzed. The positions of the normal shock depending on the pressure ratios are also compared.

  • PDF

Determination of Beam Quality Correction Factors for the PTW-Markus Chamber for Electron Beam Qualities R50=1.0 and 1.4 g/cm2 (전자선 선질 R50=1.0과 1.4 g/cm2에 대한 PTW-Markus 전리함의 선질보정인자 결정에 관한 연구)

  • Kim, Me Young;Rhee, Dong Joo;Moon, Young Min;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.178-184
    • /
    • 2015
  • The Markus ionization chamber(R) is a small plane parallel ionization chamber widely used in clinical electron beam dosimetry. Plane parallel chambers were recommended for low energy electron dosimetry with the beam quality at $R_{50}<4.0g/cm^2$ (${\bar{E}}{\approx}10MeV$) according to TRS-398 protocol. However, the quality correction factors ($k_{Q,Q_0}$) of the Markus chamber was not presented in TRS-398 protocol for electron beam quality at $R_{50}<2.0g/cm^2$ (${\bar{E}}{\approx}4MeV$). In this study, the $k_{Q,Q_0}$ factors of the Markus chambers (PTW-34045) for beam qualities at $R_{50}=1.0$, 1.4, 2.0, 2.5, 3.0, and $5.0g/cm^2$ were determined by Monte Carlo calculations (DOSRZnrc/EGSnrc) and the dosimetric formalism of quality correction factor. The derived $k_{Q,Q_0}$ values were evaluated using the produced data based on TRS-398 and TG-51 protocols and known values for the Markus chamber.