• 제목/요약/키워드: pixel-based processing

검색결과 436건 처리시간 0.023초

SegNet과 ResNet을 조합한 딥러닝에 기반한 횡단보도 영역 검출 (Detection of Zebra-crossing Areas Based on Deep Learning with Combination of SegNet and ResNet)

  • 량한;서수영
    • 한국측량학회지
    • /
    • 제39권3호
    • /
    • pp.141-148
    • /
    • 2021
  • 본 논문은 SegNet과 ResNet을 조합한 딥러닝을 이용하여 횡단보도를 검출하는 방법을 제안한다. 시각 장애인의 경우 횡단보도가 어디에 있는지 정확히 아는 게 안전한 교통 시스템에서 중요하다. 딥러닝에 의한 횡단보도 검출은 이 문제에 대한 좋은 해결책이 될 수 있다. 로봇 시각 기반 보조 기술은 지난 몇년 동안 카메라를 사용하는 특정 장면에 초점을 두고 제안되어 왔다. 이러한 전통적인 방법은 비교적 긴 처리 시간으로 의미있는 결과를 얻었으며 횡단보도 인식을 크게 향상시켰다. 그러나 전통적인 방법은 지연 시간이 길고 웨어러블 장비에서 실시간을 만족시킬 수 없다. 본 연구에서 제안하는 방법은 취득한 영상에서 횡단보도를 빠르고 안정적으로 검출하기 위한 모델을 제안한다. 모델은 SegNet과 ResNet을 기반으로 개선되었으며 3단계로 구성된다. 첫째, 입력 영상을 서브샘플링하여 이미지 특징을 추출하고 ResNet의 컨벌루션 신경망을 수정하여 새로운 인코더로 만든다. 둘째, 디코딩 과정에서 업샘플링 네트워크를 통해 특징맵을 원영상 크기로 복원한다. 셋째, 모든 픽셀을 분류하고 각 픽셀의 정확도를 계산한다. 이 실험의 결과를 통하여 수정된 시맨틱 분할 알고리즘의 적격한 정확성을 검증하는 동시에 결과 출력 속도가 비교적 빠른 것으로 파악되었다.

딥러닝 기반의 초분광영상 분류를 사용한 환경공간정보시스템 활용 (Deep Learning-based Hyperspectral Image Classification with Application to Environmental Geographic Information Systems)

  • 송아람;김용일
    • 대한원격탐사학회지
    • /
    • 제33권6_2호
    • /
    • pp.1061-1073
    • /
    • 2017
  • 본 연구는 4차 산업의 핵심기술인 인공지능과 환경공간정보의 융합을 통한 정보생산 및 활용가능성을 제시하고자 대표적인 딥러닝(deep-learning) 기법인 CNN(Convolutional Neural Network)을 이용한 영상분류를 수행하였다. CNN은 학습을 통해 스스로 분류기준에 따른 커널의 속성을 결정하며, 최적의 특징영상(feature map)을 추출하여 화소를 분류한다. 본 연구에서는 CNN network를 구성하여 기존의 영상처리 기법으로 해결이 어려웠던 분광특성이 유사한 물질간의 분류 및 GIS속성정보에 따른 분류를 수행하였으며, 항공초분광센서인 CASI(Compact Airborne Spectrographic imager)와 AISA(Airborne Imaging Spectrometer for Application)로 취득된 영상을 이용하였다. 실험대상지역은 총 3곳이며, Site 1과 Site 2는 감자, 양파, 벼 등의 다양한 농작물을 포함하며, Site 3는 단독주거시설, 공동주거시설 등 세분류 토지피복도의 분류 항목으로 구성된 건물을 포함한다. 실험결과, 분류 정확도 96%, 99%로 농작물을 종류에 따라분류하였으며, 96%의 정확도로 건물을 용도에 따라 분류하였다. 본 연구의 결과를 환경공간정보 서비스에 활용하기 위하여 계절별 농작물의 종류를 제공할 수 있는 환경주제도를 제안하였으며, 기존의 토지피복도와 최신 GIS자료를 이용한 세분류 토피지복도 제작 및 갱신 가능성을 확인하였다.

2019 강릉-동해 산불 피해 지역에 대한 PlanetScope 영상을 이용한 지형 정규화 기법 분석 (Analysis on Topographic Normalization Methods for 2019 Gangneung-East Sea Wildfire Area Using PlanetScope Imagery)

  • 정민경;김용일
    • 대한원격탐사학회지
    • /
    • 제36권2_1호
    • /
    • pp.179-197
    • /
    • 2020
  • 지형 정규화 기법은 영상 촬영 시의 광원, 센서 및 지표면 특성에 따라 발생하는 밝기값 상의 지형적인 영향을 제거하는 방법으로, 지형 조건으로 인해 동일 피복의 픽셀들이 서로 다른 밝기값을 지닐 때 그 차이를 감소시킴으로써 평면 상의 밝기값과 같아 보이도록 보정한다. 이러한 지형적인 영향은 일반적으로 산악 지형에서 크게 나타나며, 이에 따라 산불 피해 지역 추정과 같은 산악 지형에 대한 영상 활용에서는 지형 정규화 기법이 필수적으로 고려되어야 한다. 그러나 대부분의 선행연구에서는 중저해상도의 위성영상에 대한 지형 보정 성능 및 분류 정확도 영향 분석을 수행함으로써, 고해상도 다시기 영상을 이용한 지형 정규화 기법 분석은 충분히 다루어지지 않았다. 이에 본 연구에서는 PlanetScope 영상을 이용하여 신속하고 정확한 국내 산불 피해 지역 탐지를 위한 각 밴드별 최적의 지형 정규화 기법 평가 및 선별을 수행하였다. PlanetScope 영상은 3 m 공간 해상도의 전세계 일일 위성영상을 제공한다는 점에서 신속한 영상 수급 및 영상 처리가 요구되는 재난 피해 평가 분야에 높은 활용 가능성을 지닌다. 지형 정규화 기법 비교를 위해 보편적으로 이용되고 있는 7가지 기법을 구현하였으며, 토지 피복 구성이 상이한 산불 전후 영상에 모두 적용, 분석함으로써 종합적인 피해 평가에 활용될 수 있는 밴드 별 최적 기법 조합을 제안하였다. 제안된 방법을 통해 계산된 식생 지수를 이용하여 화재 피해 지역 변화 탐지를 수행하였으며, 객체 기반 및 픽셀 기반 방법 모두에서 향상된 탐지 정확도를 나타내었다. 또한, 화재 피해 심각도(burn severity) 매핑을 통해 지형 정규화 기법이 연속적인 밝기값 분포에 미치는 효과를 확인하였다.

많은 통행량과 조명 변화에 강인한 빠른 배경 모델링 방법 (A Fast Background Subtraction Method Robust to High Traffic and Rapid Illumination Changes)

  • 이광국;김재준;김회율
    • 한국멀티미디어학회논문지
    • /
    • 제13권3호
    • /
    • pp.417-429
    • /
    • 2010
  • 배경 제거를 위한 많은 연구가 있어왔음에도 기존의 방법들을 실제 환경에 효과적으로 적용하기에는 아직도 많은 어려움이 있다. 본 논문에서는 배경 제거를 실제 환경에 적용하면서 만나게 되는 다양한 문제들을 해결하기 위해 기존의 가우시안 혼합 모델 방법을 개선하는 배경 제거 방법을 제안한다. 첫째로 제안한 방법은 낮은 계산량을 얻기 위하여 고정 소수점 연산을 이용하였다. 배경 모델링 과정은 변수들의 높은 정밀도를 요구하지 않기 때문에 제안한 방법에서는 고정 소수점 변수를 이용함으로서 정확도를 유지한 채 연산 속도를 크게 향상시킬 수 있었다. 두 번째로 보행자들의 높은 통행량 하에서 흔히 발생되는 전경 객체가 배경으로 학습되는 문제를 피하기 위하여 각 화소의 정적인 정도를 이용하여 배경 모델의 학습 속도를 동적으로 조절하였다. 즉 최근 화소 값에 큰 차이가 발생한 화소들은 배경 영역이 아닐 가능성이 높으므로, 이에 대해 낮은 학습 비율을 적용함으로써 높은 통행량을 보이는 영상에서도 유효한 배경 모델을 유지하는 것이 가능했다. 마지막으로 영상의 빠른 밝기값 변화에 대응하기 위하여 연속한 두 프레임 간의 밝기 변화를 선형 변환으로 추정하였으며, 훈련된 배경 모델을 이 선형 변환에 의해 직접적으로 변환시켜 주었다. 제안한 고정 소수점 연산에 의해 기존의 가우시안 혼합 배경 모델링 방법을 구현한 결과 배경 제거에 기존 방법의 약 30%의 연산시간 만을 필요로 하였다. 또한 제안한 방법을 실제 환경의 영상에 적용한 결과 기존의 배경 제거 방법에 비해 검출률이 약 20% 향상되었으며, 오검률은 5~15% 가량 낮아지는 것을 확인하였다.

A modified U-net for crack segmentation by Self-Attention-Self-Adaption neuron and random elastic deformation

  • Zhao, Jin;Hu, Fangqiao;Qiao, Weidong;Zhai, Weida;Xu, Yang;Bao, Yuequan;Li, Hui
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.1-16
    • /
    • 2022
  • Despite recent breakthroughs in deep learning and computer vision fields, the pixel-wise identification of tiny objects in high-resolution images with complex disturbances remains challenging. This study proposes a modified U-net for tiny crack segmentation in real-world steel-box-girder bridges. The modified U-net adopts the common U-net framework and a novel Self-Attention-Self-Adaption (SASA) neuron as the fundamental computing element. The Self-Attention module applies softmax and gate operations to obtain the attention vector. It enables the neuron to focus on the most significant receptive fields when processing large-scale feature maps. The Self-Adaption module consists of a multiplayer perceptron subnet and achieves deeper feature extraction inside a single neuron. For data augmentation, a grid-based crack random elastic deformation (CRED) algorithm is designed to enrich the diversities and irregular shapes of distributed cracks. Grid-based uniform control nodes are first set on both input images and binary labels, random offsets are then employed on these control nodes, and bilinear interpolation is performed for the rest pixels. The proposed SASA neuron and CRED algorithm are simultaneously deployed to train the modified U-net. 200 raw images with a high resolution of 4928 × 3264 are collected, 160 for training and the rest 40 for the test. 512 × 512 patches are generated from the original images by a sliding window with an overlap of 256 as inputs. Results show that the average IoU between the recognized and ground-truth cracks reaches 0.409, which is 29.8% higher than the regular U-net. A five-fold cross-validation study is performed to verify that the proposed method is robust to different training and test images. Ablation experiments further demonstrate the effectiveness of the proposed SASA neuron and CRED algorithm. Promotions of the average IoU individually utilizing the SASA and CRED module add up to the final promotion of the full model, indicating that the SASA and CRED modules contribute to the different stages of model and data in the training process.

사전검수영역기반정합법과 't-분포 과대오차검출법'을 이용한 위성영상의 '자동 영상좌표 상호등록' (Automated Satellite Image Co-Registration using Pre-Qualified Area Matching and Studentized Outlier Detection)

  • 김종홍;허준;손홍규
    • 대한토목학회논문집
    • /
    • 제26권4D호
    • /
    • pp.687-693
    • /
    • 2006
  • 최근 전 지구적, 혹은 대규모 지역의 분석 및 모니터링을 위한 위성영상의 사용이 늘어나고 있으며 이를 처리하기 위해 빠르고 편리한 '영상좌표 상호등록'방법이 요구되고 있다. 이러한 '영상좌표 상호등록'은 위성의 센서모델 및 천체력 자료를 이용하는 엄밀 모델식을 이용하는 방법과 기 존재하는 기준 영상(Reference image)을 사용하거나 혹은 수치지도를 사용하는 경험적 방법의 두 가지로 분류할 수 있다. '영상좌표 상호등록'의 효율성을 높이기 위해서 저자는 '사전검수 영역기반정합법'(Pre-qualified area matching)을 사용하였다. 이는 Canny 연산자를 이용한 경계추출법, 교차상관계수를 사용한 영역기반정합법(Area based matching), t-분포를 이용하여 95%의 신뢰구간 내에서 과대오차 소거법을 적용한 방법이다. 이러한 사전검수(Pre-qualification) 과정을 통해 연산시간을 현저히 단축시켰고, '영상좌표 상호등록'의 정확도 역시 향상됨을 알 수 있었다. 제안한 알고리즘을 사용하여 프로그램을 작성하고, 한반도 Landsat ETM+ 영상 3장을 이용하여 테스트하였다. 정합점 간의 평균제곱오차는 0.435 영상소, 정합점은 평균 25,573개로 나타났다. 연산 시간은 3.0GHz 1Gb RAM 사양의 컴퓨터에서 평균 약 4.2분으로 나타났다.

이동식 터널 스캐닝 시스템의 이미지 품질 평가 기법의 적용성 분석 (Analysis of the application of image quality assessment method for mobile tunnel scanning system)

  • 이철희;김동구;김동규
    • 한국터널지하공간학회 논문집
    • /
    • 제26권4호
    • /
    • pp.365-384
    • /
    • 2024
  • 인력기반의 점검보다 안전하고 효율적인 자동화 점검을 위하여 스캐닝 기술 개발이 가속화되고 있다. 컴퓨터비전 기술을 활용하여 수집된 이미지로부터 시설물 손상을 자동으로 검출하는 연구도 증가하고 있다. 이미지의 픽셀 크기, 품질 및 수량은 손상 자동 검출을 위한 딥러닝이나 이미지 처리 성능에 영향을 미칠 수 있다. 본 연구는 딥러닝기반 손상 자동 검출을 위한 이동식 터널 스캐닝 시스템의 카메라 성능과 고품질의 원시 이미지 데이터 취득을 위한 기초연구로, 이미지의 품질을 정량적으로 평가하기 위한 기법을 제안하려고 한다. 40 km/h의 이동속도 모사가 가능한 패널 장치에 테스트차트를 부착하고 국제표준 ISO 12233방법으로 실내시험을 수행하였다. 기존의 이미지 품질 평가기법들을 적용하여 실내실험에서 얻어진 이미지의 품질을 평가하였다. 카메라의 셔터스피드는 이미지에 발생하는 모션블러와 밀접한 관련이 있는 것으로 판단되었다. 이미지 품질 평가 기법 중 하나인 modulation transfer function (MTF)는 이미지 품질을 객관적으로 평가할 수 있으며, 시각적 관찰과 일치하는 것으로 판단되었다.

명시야 현미경 영상에서의 세포 분할을 위한 이중 사전 학습 기법 (Dual Dictionary Learning for Cell Segmentation in Bright-field Microscopy Images)

  • 이규현;트란민콴;정원기
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제22권3호
    • /
    • pp.21-29
    • /
    • 2016
  • 본 논문은 명시야 (bright-field) 현미경 영상를 위한 데이터 기반 세포 분할 알고리즘을 제시한다. 제시된 알고리즘은 일반적인 사전 학습 기법과 다르게 동시에 두 개의 사전과 관련된 희소 코드 (sparse code)를 통해 정의된 에너지 함수의 최소화를 진행하게 된다. 두 개의 사전 중 하나는 명시야 영상에 대해 학습된 사전이고 다른 하나는 사람에 의해 수작업으로 세포 분할된 영상에 대해 학습된 것이다. 학습된 두 개의 사전을 세포 분할 될 새로운 입력 영상에 대해 적용하여 이와 관련된 희소 코드를 획득한 후 픽셀 단위의 분할을 진행하게 된다. 효과적인 에너지 최소화를 위해 합성곱 희소 코드 (Convolutional Sparse Coding)와 Alternating Direction of Multiplier Method(ADMM)이 사용되었고 GPU를 사용하여 빠른 분산 연산이 가능하다. 본 연구는 이전에 사용된 가변형 모델 (deformable model)을 이용한 세포 분할 방식과는 다르게 제시된 알고리즘은 세포 분할을 위해 사전 지식이 필요없이 데이터 기반의 학습을 통해서 쉽고 효율적으로 세포 분할을 진행할 수 있다.

AR 모델 기반의 고전영화의 긁힘 손상의 자동 탐지 및 복원 시스템 설계와 구현 (Design and Implementation of AR Model based Automatic Identification and Restoration Scheme for Line Scratches in Old Films)

  • 한녹손;김성환
    • 정보처리학회논문지B
    • /
    • 제17B권1호
    • /
    • pp.47-54
    • /
    • 2010
  • 오래된 영화 필름이나 비디오 테이프 등의 영상물에서 나타나는 대표적인 손상으로는 긁힘과 얼룩무늬 손상이 있으며, 본 논문은 긁힘 손상을 자동 탐지하고, 자기상관 (AR: autoregressive) 이미지 생성모델 (PAST-PRESENT 모델) 기반의 영상 인페인팅 모델을 사용하여 손상을 복원하는 시스템을 설계하고 구현하였다. AR 이미지 모델 생성을 위해, 지역성을 최대화할 수 있도록 인접 화소를 모으는 Sampling Pattern을 사용하였으며, 추출된 화소들을 필터링 (filtering)하는 단계, AR 모델 파라미터 계산 (model fitting)을 위한 Durbin-Levinson 알고리즘, 최종 파라미터를 통한 훼손된 화소의 예측 및 보간 단계로 구성된다. 구현된 시스템은(1) VHS 테이프를 통한 아날로그 영상물의 디지털화, (2) 긁힘 손상의 자동탐지와 자동손상복원, (3) 얼룩무늬의 수동탐지와 자동복원의 3단계 복원절차를 지원하도록 설계하였다. 단계 1과 단계 2는 영상복원 고속화를 위해 TIDSP 보드 (TMS320DM642 EVM)을 이용하여 구현하였으며, 단계 3은 사용자의 수동탐지를위해, PC 를 사용하여 구현하였다. 본 논문에서 제안된 기법을 고전 한국영화 2편 (자유만세와 로보트 태권 V)에 대하여 실험하였으며, 본 논문에서 제안한 자기상관 기반의 복원 시스템은 Bertalmio 인페인팅 기법과 비교하였으며, 주관적 화질 (MOS 테스트) 및 객관적 화질 (PSNR), 특히, 숙련된 복원기술자에 의한 복원과의 차이를 정의하는 복구품질 (RR)에서 향상된 결과를 보임을 확인하였다.

DV에서 MPEG-2로의 주파수 영역 변환 부호화 (A Frequency Domain DV-to-MPEG-2 Transcoding)

  • 김도년;윤범식;최윤식
    • 대한전자공학회논문지SP
    • /
    • 제38권2호
    • /
    • pp.138-148
    • /
    • 2001
  • 디지털 캠코더에서 이용하는 영상 압축 방식인 DY 부호화 방식은 DCT와 가변장 부호화 방식을 이용한다. DV 방식은 하드웨어 복잡도가 낮은 반면 압축된 비트율이 악 26Mb/s로 높은 편이다. 따라서 스튜디오에서 낮은 복잡도로 영상을 부호화 한 후 VOD 시스템에 이용하기 위하여 MPEG-2로 변환부호화 할 필요가 있다. 이때의 두 압축방식이 DCT를 이용하므로, DCT 영역에서 변환부호화 하면 중간 과정을 줄일 수 있어서 계산상의 복잡도를 줄일 수 있다. DV 방식에서 MPEG-2 인트라로 변환부호화 시에, DV 방식의 4:1:1 색차 포맷을 MPEG-2의 4:2:2 영상 포맷으로 변환할 때 와 2-4-8 DCT 모드에서 8-8 DCT 모드로 변환 시 변환 영역에 있는 데이터에 미리 계산된 행렬을 곱함으로써 병렬처리가 가능하게 하였다. MPEG-2 율제어 시에 서브 블록의 분산을 완전히 DCT 영역에서 계산하였다. 실험을 통하여 제안한 방식들을 검증하였다. MPEG-2 인터 프레임 부호화로 변환 부호화 할 때 DCT 계수를 이용하여 계층적으로 움직임을 추정하였다. 먼저 4개의 서브 블록에 있는 4개의 DC 값으로 하나의 매크로 블록에 대한 움직임을 추정한 다음 각 서브 블록의 저주파수에 해당하는 2×2에 IDCT를 취하여 16 포인트로 구성된 매크로 블록을 만든 후 이에 대한 움직임을 추정하며, 다섯 번째 단계에서 서브 화소에 대한 움직임을 추정함으로써 움직임 추정을 마친다. 탐색영역을 겹치는 방식이 겹치지 않는 방식보다 좋은 PSNR값을 보여 주었다.

  • PDF