• Title/Summary/Keyword: pixel value

Search Result 703, Processing Time 0.026 seconds

Adaptive Interpolation for Intra Frames in H.264 Using Interference Function (H.264 인트라 프레임에서 방해함수를 이용한 적응적 보간)

  • Park Mi-Seon;Yoo Jae-Myeong;Toan Nguyen Dinh;Kim Ji-Soo;Son Hwa-Jeong;Lee Guee-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.10
    • /
    • pp.107-113
    • /
    • 2006
  • Error Concealment method for Intra frames in H.264 reconstructs the lost block by computing weighted average value of the boundary pixels of the neighboring blocks; up, bottom, left and right blocks. However a simple average of pixel values of the neighboring blocks for Intra frames in H.264 leads to excessive blurring and degrades the picture quality severely. To solve this problem, in this paper we estimate the dominant edge of lost block using the pixel values of the neighboring blocks and reconstruct the pixel values by choosing adaptive interpolation between directional interpolation and weighted average interpolation considering the result value of the interference function based on statistics. Finally directional interpolation method improves by determining the dominant edge direction considering the relation of the dominent edge and the edges of neighboring blocks. Experiments show improvement of picture quality of about $0.5{\sim}2.0dB$ compared with the method of H.264.

  • PDF

Investigation of Ring Artifact Using Algebraic Reconstruction Technique (대수적 재구성 기법을 통한 링 아티팩트 조사)

  • Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.65-70
    • /
    • 2018
  • Computed tomography system is widely used on various fields because section image of an object can be acquired. During several step to obtain section image, artifacts by many error factors can be added on the image. Ring artifact induced by the CT system is examined in this study. A test phantom of $512{\times}512$ size was constructed numerically, and the ring artifact was investigated by the algebraic reconstruction technique. The computer program was realized using Visual C++ under the fan beam geometry with projections of 720 and detector pixel of 1,280. The generation of ring artifact was verified by applying different detection efficiency on detector pixels. The ring intensity became large as increasing the ring value, and the ring artifacts were strongly emphasized near the center of the reconstructed image. The ring artifact may be eliminated by tracking the position of ring artifact on the reconstructed image and by calibrating the detector pixel.

Boundary-preserving Stereo Matching based on Confidence Region Detection and Disparity Map Refinement (신뢰 영역 검출 및 시차 지도 재생성 기반 경계 보존 스테레오 매칭)

  • Yun, In Yong;Kim, Joong Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.132-140
    • /
    • 2016
  • In this paper, we propose boundary-preserving stereo matching method based on adaptive disparity adjustment using confidence region detection. To find the initial disparity map, we compute data cost using the color space (CIE Lab) combined with the gradient space and apply double cost aggregation. We perform left/right consistency checking to sort out the mismatched region. This consistency check typically fails for occluded and mismatched pixels. We mark a pixel in the left disparity map as "inconsistent", if the disparity value of its counterpart pixel differs by a value larger than one pixel. In order to distinguish errors caused by the disparity discontinuity, we first detect the confidence map using the Mean-shift segmentation in the initial disparity map. Using this confidence map, we then adjust the disparity map to reduce the errors in initial disparity map. Experimental results demonstrate that the proposed method produces higher quality disparity maps by successfully preserving disparity discontinuities compared to existing methods.

Optical Security System Using Phase Mask and Interferometer (위상 카드와 간섭계를 이용한 광학적 보안 시스템)

  • Kim, Jong-Yun;Kim, Gi-Jeong;Park, Se-Jun;Kim, Cheol-Su;Bae, Jang-Geun;Kim, Jeong-U;Kim, Su-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.1
    • /
    • pp.37-43
    • /
    • 2001
  • In this paper, we propose a new optical security technique using two phase masks based on interferometer. A binary random phase image is used as a reference image and the encrypted image is generated according to the phase difference between the reference image and the original image. If there is no phase difference of a same pixel position in two phase masks, interference intensity of the pixel has minimum value and if phase difference of a same pixel position in two phase masks is $\pi$, its interference intensity has maximum value. We can decrypt the original image by putting two phase masks on each of the two optical paths of the Mach-Zehnder interferometer. Computer simulation and the optical experiments show a good performance of the proposed optical security system.

  • PDF

Adaptive Hyperspectral Image Classification Method Based on Spectral Scale Optimization

  • Zhou, Bing;Bingxuan, Li;He, Xuan;Liu, Hexiong
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.270-277
    • /
    • 2021
  • The adaptive sparse representation (ASR) can effectively combine the structure information of a sample dictionary and the sparsity of coding coefficients. This algorithm can effectively consider the correlation between training samples and convert between sparse representation-based classifier (SRC) and collaborative representation classification (CRC) under different training samples. Unlike SRC and CRC which use fixed norm constraints, ASR can adaptively adjust the constraints based on the correlation between different training samples, seeking a balance between l1 and l2 norm, greatly strengthening the robustness and adaptability of the classification algorithm. The correlation coefficients (CC) can better identify the pixels with strong correlation. Therefore, this article proposes a hyperspectral image classification method called correlation coefficients and adaptive sparse representation (CCASR), based on ASR and CC. This method is divided into three steps. In the first step, we determine the pixel to be measured and calculate the CC value between the pixel to be tested and various training samples. Then we represent the pixel using ASR and calculate the reconstruction error corresponding to each category. Finally, the target pixels are classified according to the reconstruction error and the CC value. In this article, a new hyperspectral image classification method is proposed by fusing CC and ASR. The method in this paper is verified through two sets of experimental data. In the hyperspectral image (Indian Pines), the overall accuracy of CCASR has reached 0.9596. In the hyperspectral images taken by HIS-300, the classification results show that the classification accuracy of the proposed method achieves 0.9354, which is better than other commonly used methods.

Usefulness of an Auxiliary Tool for Hand Radiography by Using 3D Printing (3D 프린팅을 이용한 손 엑스선 검사 보조도구의 유용성)

  • Ji-Won Kim;Bon-Yeoul Koo
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.485-491
    • /
    • 2023
  • As an auxiliary tool for fixing the patient's posture when taking an X-ray, sponges with high radiolucencies are laminated in various thicknesses. This study aimed to evaluate the usefulness of an auxiliary tool for hand oblique projection X-ray by manufacturing it with a uniform thickness by 3D printing and comparing it with existing sponge tools. In the auxiliary tool, radiolucency was measured at the stairs where each finger was located, and pixel information values were compared in the digital imaging and communications in medicine(DICOM) image. Contrast to noise ratio(CNR) and signal to noise ratio(SNR) were compared by shooting the hand phantom and the auxiliary tool together. As the thickness of the sponge tool increased, radiolucency decreased by 15.52% and pixel information value increased by 20.61%. The transmittance of the 3D printing tool increased by 0.82%, and the pixel information value differed by 5.66%. CNR and SNR increased by 20.03% and 22.42% in 3D printing compared to existing sponge tools. while taking hand oblique projection, maintaining the thickness of the auxiliary tool uniformly through 3D printing maintains high radiolucency and minimal impact on medical images, and increases CNR and SNR, making it useful as an auxiliary tool for taking hand oblique projection.

Image encryption using phase-based virtual image and interferometer

  • Seo, Dong-Hoan;Shin, Chang-Mok;Kim, Jong-Yun;Bae, Jang-Keun;Kim, Jeong-Woo;Kim, Soo-Joong
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.631-634
    • /
    • 2002
  • In this paper, we propose an improved optical security system using three phase-encoded images and the principle of interference. This optical system based on a Mach-Zehnder interferometer consists of one phase-encoded virtual image to be encrypted and two phase-encoded images, encrypting image and decrypting image, where every pixel in the three images has a phase value of '0' and '$\pi$'. The proposed encryption is performed by the multiplication of an encrypting image and a phase-encoded virtual image which dose not contain any information from the decrypted image. Therefore, even if the unauthorized users steal and analyze the encrypted image, they cannot reconstruct the required image. This virtual image protects the original image from counterfeiting and unauthorized access.. The decryption of the original image is simply performed by interfering between a reference wave and a direct pixel-to-pixel mapping image of the encrypted image with a decrypting image. Both computer simulations and optical experiments confirmed the effectiveness of the proposed optical technique for optical security applications.

  • PDF

1 Bit/Pixel Modulation Codes for Multi-Level Holographic Data Storage System (멀티레벨 홀로그래픽 데이터 저장장치를 위한 1비트/픽셀 변조부호)

  • Jeong, Seongkwon;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1667-1671
    • /
    • 2015
  • Multi-level holographic data storage is a candidate for the next generation data storage system, since it can store more than one bit per pixel. It is possible to increase the number of codewords if the number of levels is increased, and the code with an appropriate selection of codewords can also increase the minimum distance. In this paper, we propose three multi-level modulation codes of the code rate 1 bit/pixel and compare the performance according to the minimum distance. The result shows that the code with small number of levels is better than that of large number of levels because it is hard to detect threshold value.

A motion-adaptive de-interlacing method using an efficient spatial and temporal interpolation (효율적인 시공간 보간을 통한 움직임 기반의 디인터레이싱 기법)

  • Lee, Seong-Gyu;Lee, Dong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.5
    • /
    • pp.556-566
    • /
    • 2001
  • This paper proposes a motion-adaptive de-interlacing algorithm based on EBMF(Edge Based Median Filter) and AMPDF(Adaptive Minimum Pixel Difference Fillet). To compensate 'motion missing'error, which is an important factor in motion-adaptive methods, we used AMPDF which estimates an accurate value using different thresholds after classifying the input image to 4 classes. To efficiently interpolate the moving diagonal edge, we also used EBMF which selects a candidate pixel according to the edge information. Finally, we, to increase the performance, adopted an adaptive interpolation after classifying the input image to moving region, stationary region, and boundary region. Simulation results showed that the proposed method provides better performance than the existing methods.

  • PDF

New Still Edge Image Compression based on Distribution Characteristics of the Value and the Information on Edge Image (경계의 값 분포 특성과 정보를 기반한 새로운 경계 영상 압축 기법)

  • Kim, Do Hyun;Han, Jong Woo;Kim, Yoon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.6
    • /
    • pp.990-1002
    • /
    • 2016
  • In this paper, we propose a new compression method for the edge image by analyzing the characteristics and the distribution of pixel values of the edge image. The pixel values of the edge image have the Gaussian distribution around '0', and most of the pixel values are `0`. By these analyses we suggest the Zero-Based codec that expresses all values in a CU by a single bit flag. Also, in order to reduce the computational complexity of the proposed codec, the block partition and the intra-prediction techniques are proposed by using edge information like the number of each edge direction, the distribution and the amplitude of a major edge direction in the CU. Experimental results show that the proposed codec leads to a slighter distortion in Y domain than that of HEVC, but has far faster processing speed up to 53 times while it maintains the similar image quality compared to HEVC.