• Title/Summary/Keyword: pituitary hormone

Search Result 262, Processing Time 0.029 seconds

Preliminary Surgical Results of Open Sella Method with Intentionally Staged Transsphenoidal Approach for Patients with Giant Pituitary Adenomas

  • Kim, Young-Zoon;Song, Yeung-Jin;Kim, Hyung-Dong
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.1
    • /
    • pp.16-19
    • /
    • 2005
  • Objective: This study is designed to evaluate the clinical outcome, the safety and the effectiveness of the open sella methods(OSM) with intentionally staged transsphenoidal approach(TSA) for giant pituitary adenomas(GPA). Methods: Eight patients with GPA were managed by the OSM with intentionally staged TSA. There were 5 nonfunctioning adenomas, 2 prolactin-secreting adenomas, and 1 growth hormone-secreting adenoma. Among them, 6 patients underwent two times of TSA, one patient underwent three times of TSA, and the other patient underwent two times of TSA followed by radiation therapy. The mean time interval between staged operations was 3.9 months except for one case. Results: Seven out of the eight patients with GPA treated with the OSM with intentionally staged TSA showed that the tumors were completely removed on magnetic resonance imaging and that they were free from headache and visual problem suffered previously. Only one patient experienced severe complications including panhypo-pituitarism, cerebrospinal fluid rhinorrhea and permanent diabetes insipidus. Conclusion: With the surgical treatment for 8 cases of GPA, which extended to the suprasellar and parasellar area, we suggest that the OSM with intentionally staged TSA is a safe and effective method in management for GPA.

Expression of Maturation-Related Genes and Leptin during Sexual Maturation in the Female Goldfish: Effects of Exogenous Kisspeptin

  • Kim, Na Na;Choi, Young Jae;Oh, Sung-Yong;Choi, Cheol Young
    • Journal of Marine Life Science
    • /
    • v.1 no.1
    • /
    • pp.41-49
    • /
    • 2016
  • Kisspeptin (Kiss) and its cognate receptor, kisspeptin receptor (KissR; G protein coupled receptor 54, GPR54), have recently been recognized as potent regulators of reproduction in teleosts. Additionally, leptin plays an important role in energy homeostasis and reproductive function in teleosts. The purpose of this study was to examine differences in the concentration of the hormones of the Kiss/KissR system and leptin and the expression of their underlying genes, all of which are involved in the sexual maturation of female goldfish, Carassius auratus, following treatment with Kiss. The expression levels of KissR increased after the Kiss injection. Furthermore, the peptide hormone leptin also increased after the injection (in vivo and in vitro). Additionally, the expression of GnRH and GTHs (GTHα, FSHβ, and LHβ) increased in the brain and pituitary (in vitro and in vitro). These results support the hypothesis that Kiss plays important roles in the direct regulation of the hypothalamus-pituitary-gonad axis and leptin in goldfish. Therefore, we suggest that Kiss system gene expression is correlated with energy balance and reproduction.

Stress response: Physiological and Behavioral Aspects (스트레스반응의 생 행동적 접근)

  • Kim, Keum-Soon
    • Perspectives in Nursing Science
    • /
    • v.2 no.1
    • /
    • pp.61-75
    • /
    • 2005
  • Physical and psychological events can produce stress response in various degrees. Stress affects many aspects of physiology including both brain and peripheral elements which is represented as hypothalamus-pituitary-adrenal axis. Brain elements consist of corticotropin-releasing hormone(CRH), locus ceruleus(LC)-norepinephrine(NE)/autonomic system. Peripheral elements include pituitary-adrenal axis and the autonomic nervous system, which coordinate the stress response. Current trend of the stress researches is emphasizing the mechanisms of the stress response which is adaptive or become maladaptive. This review introduces 1) the concepts of stress, 2) physiological and behavioral aspects of stress responses, 3) the consequences of stress response, 4) the measurements of stress and 5) stress management for those interested in stress research.

  • PDF

Expression of Recombinant Human Follicle-stimulating Hormone in the Chinese Hamster Ovary Cell

  • Park, Ji-Hyun;Kim, Nam-Hyung;Hosup Shim;Kim, Teoan
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.100-100
    • /
    • 2002
  • As an preliminary experiment for making transgenic animals producing human follicle stimulating hormone (hFSH), we tried to express recombinant hFSH gene in vitro. hFSH is a heterodimeric glycoprotein hormone produced in the anterior pituitary gland. The hormone is essential in the regulation of reproductive processes, such as follicular development and ovulation. Genes encoding the common gonadotrophin alpha subunit and FSH-specific beta subunit were inserted into retroviral vectors under the control of the rat beta actin promoter. Gene transfer to the Chinese hamster ovary (CHO) cells was done by infection of the retroviruses harvested from PT67 packaging cells transfected with recombinant retrovirus vector DNA. After selection with G4l8, PCR and RT-PCR analyses of the G4l8-resistant CHO cells showed successful transfer and expression of both ${\alpha}$ and ${\beta}$ fragments of the FSH gene.

  • PDF

Endocrine problems in children with Prader-Willi syndrome: special review on associated genetic aspects and early growth hormone treatment

  • Jin, Dong-Kyu
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.7
    • /
    • pp.224-231
    • /
    • 2012
  • Prader-Willi syndrome (PWS) is a complex multisystem genetic disorder characterized by hypothalamic-pituitary dysfunction. The main clinical features include neonatal hypotonia, distinctive facial features, overall developmental delay, and poor growth in infancy, followed by overeating with severe obesity, short stature, and hypogonadism later in development. This paper reviews recent updates regarding the genetic aspects of this disorder. Three mechanisms (paternal deletion, maternal disomy, and deficient imprinting) are recognized. Maternal disomy can arise because of 4 possible mechanisms: trisomy rescue (TR), gamete complementation (GC), monosomy rescue (MR), and postfertilization mitotic nondisjunction (Mit). Recently, TR/GC caused by nondisjunction at maternal meiosis 1 has been identified increasingly, as a result of advanced maternal childbearing age in Korea. We verified that the d3 allele increases the responsiveness of the growth hormone (GH) receptor to endogenous GH. This paper also provides an overview of endocrine dysfunctions in children with PWS, including GH deficiency, obesity, sexual development, hypothyroidism, and adrenal insufficiency, as well as the effects of GH treatment. GH treatment coupled with a strictly controlled diet during early childhood may help to reduce obesity, improve neurodevelopment, and increase muscle mass. A more active approach to correct these hormone deficiencies would benefit patients with PWS.

Comparative Effects on Secretion of LH, FSH, Prolactin, and Testosterone by Chronic and Direct Hypothalamic Administration of Nonylphenol to Adult Male Rats

  • Park, Kun-Suk;Jang, Won-Cheoul;Kim, Mee-Kyung;Kim, Hyung-Gun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.215-222
    • /
    • 1999
  • Nonylphenol (NP) is a widespread environmental pollutant that has been shown to exert both toxic and estrogenic effects on mammalian cells. As the effects of NP on the reproductive system of adult male vertebrates are virtually unknown, we investigated not only the changes of reproductive hormone secretion in serum after chronic exposure to NP but also, in order to identify the site of its action, the reproductive hormone secretion in serum 48 hours after microinfusion of NP within hypothalamic preoptic area (POA). In the chronic exposure, the luteinizing hormone (LH), follicle stimulating hormone (FSH), and testosterone in serum were decreased but prolactin (PRL) concentrations were increased. The LH, FSH, and testosterone in serum were decreased through the direct infusion of NP into POA, while there was no difference in mean serum prolactin between NP and control groups. These observations suggest that NP as endocrine disruptor has modulatory effects on hypothalamo-pituitary-gonadal axis and that the site of action of NP could be hypothalamic POA.

  • PDF

Subclinical Hypothyroidism;Controversial Subjects and Therapeutic Regimen (준임상적 갑상선기능저하증;논란이 되는 주제들)

  • Park, Ji-Hun;Kim, Ho-Jun;Lee, Myeong-Jong
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.6 no.2
    • /
    • pp.29-41
    • /
    • 2006
  • Subclinical hypothyroidism is defined as a normal serum free thyroxine level combined with an elevated thyroid stimulating hormone level. The causes of subclinical hypothyroidism are the same as those of overt hypothyroidism. There is good evidence that subclinical hypothyroidism is associated with progression to overt disease. The management of subclinical hypothyroidism is remains controversial. Patients with a serum thyroid stimulating hormone level greater than 10 mU/L have a higher incidence of elevated serum low-density lipoprotein cholesterol concentrations; however, evidence is lacking for other associations. There is insufficient evidence that hormone treatment of subclinical hypothyroidism is beneficial. The use of thyroid stimulating hormone level lone as a diagnostic and assessment tool for hypothyroidism is inadequate because this test cannot identify numerous conditions this sentence is unclear in its meaning. Using an expanded list of clinical signs and symptoms associated with dysfunction of the Hypothalamus-Pituitary-Thyroid axis, it is possible to hypothesize that subclinical hypothyroidism may be more common in a population of patients with early signs of age-related diseases than most practitioners realize. To improve thyroid function in subclinical hypothyroidism patients, practitioners should become familiar with foods and nutrients that can hinder or support thyroid function.

  • PDF

Actions of a Gonadotropin-Releasing Hormone Antagonist on Gonadotropin II and Androgenic Steroid Hormone Secretion in Precocious Male Rainbow Trout

  • Kim Dae-Jung;Han Chang-Hee;Aida Katsumi
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.1
    • /
    • pp.37-43
    • /
    • 2000
  • We used a mammalian GnRH antagonist, $[Ac-3,4-dehydro-Pro^1,\;D-p-F-Phe^2,\;D-Trp^{3.6}]$-GnRH, to examine the details of the salmon type gonadotropin-releasing hormone (sGnRH) and GnRH agonist analog $(Des-Gly^{10}$[d-Ala^6]-ethylamide GnRH; GnRHa) functions in the control of maturational gonadotropin (GTH II) secretion, in precocious male rainbow trout, in both in vivo and in vitro experiments. In the in vivo study, plasma GTH II levels increased by sGnRH or GnRHa treatment, but the response was more rapid and stronger in the GnRHa treatment group. The increase in GTH II was significantly suppressed by the GnRH antagonist, while the antagonist had no effect on basal GTH II levels in both groups. The GnRH antagonist showed stronger suppression of GTH II levels in the sGnRH treatment fish than in the GnRHa treatment fish. In addition, plasma androgenic steroid hormones (testosterone and 11-ketotestosterone) increased by the sGnRH or GnRHa treatment. The GnRH antagonist significantly inhibited the increases in plasma androgenic steroid hormone levels stimulated by the sGnRH or GnRHa, while the antagonist had no effect on basal androgenic steroid hormone levels in both groups. In the in vitro study, treatment with sGnRH or GnRHa increased GTH II release from the cultured dispersed pituitary cells, but the response was stronger in the GnRHa treatment group. The increase in GTH II release by GnRH was suppressed by adding the GnRH antagonist, dose­dependently. On the other hand, basal release of GTH II did not decrease by the GnRH antagonist treatment in both groups. These results suggest that the GnRH antagonist, $[Ac-3,4-dehydro-Pro^1,\;D-p-F-Phe^2,\;D-Trp^{3.6}]-GnRH$, used in this study is effective in blocking the action of GnRH-induced GTH II release from the pituitary gland both in vivo and in vitro.

  • PDF

Stress and Immune Function (스트레스와 면역기능)

  • Koh, Kyung-Bong
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.4 no.1
    • /
    • pp.146-154
    • /
    • 1996
  • The impact of stress on immune function is known to be associated with the interactions among the central nervous system(CNS), neuroendocrine system, and immune system. The main pathways between stress and immune system are wiring of lymphoid organs and neuroendocrine system. Immune system also produces neuropeptides, which modulate immune system. Mediators of psychosocial influences on immune function are found to be peptides released by the pituitry, hormones, md autonomic nervous system. Hypothalamus integrates endocrine, neural and immune systems. Particularly, paraventricular nucleus appears to play a central role in this integration. On the other hand, endocrine system receives feedback from the immune system. The major regulatory pathways which pituitary modulates include the hypothalamic-pituitary-adrenal-thymic(HPAT) axis, hypothalamic-pituitary-gonadal-thymic(HPGT) axis, pineal-hypothalamic-pituitary(PHP) axis. Bidirectional pathways such as feedforward and feedback pathways are suggested in the interaction between stress and immune system. It suggests that psychosocial inputs affect immune function, but also that immunological inputs affect psychosocial function. Thus, prospective studies for elucidating the relationship between stress and immune function should incorporate measures of immune function as well as measures of endocrine, autonomic, and brain activities at the same time.

  • PDF

Differential Expression of Glycoprotein Hormones in Equine Placenta and Pituitary (말 태반과 뇌하수체에서 당단백질 호르몬의 특이적인 발현)

  • Min, Kwan-Sik
    • Development and Reproduction
    • /
    • v.4 no.1
    • /
    • pp.87-93
    • /
    • 2000
  • Equine chorionic gonadotropin (eCG) consists of highly glycosylated noncovalently linked $\alpha$- and $\beta$-subunits and belongs to the glycoprotein hormone family that includes lutropin (LH), follitropin (FSH), and thyrotropin (FSH). eCG is a unique member of the gonadotropin family because it elicits response characteristics of both FSH and LH in other species than the hone. eCG is synthesized and secreted by trophoblastic cells of the endometial cups between 40 and 130 days of gestation. In the present study, mRNA expression ratio of eCG, eLH and eFSH $\alpha$- and $\beta$-subunints was investigated in the placenta and pituitary. mRNA was extracted from equine placenta on day 70 of gestation and from pituitary of male horse (27 month-old). When the expression of both subunit mRNAs of eCG in the equine placenta was compared by Northern blotting, the expression of the $\beta$ -subunit mRNA was relatively greater than that of the $\alpha$-subunit. And mRNA expression of $\alpha$-, LH $\beta$- and FSH $\beta$-subunits was analysed in the equine pituitary. An $\alpha$-subunit was revealed with a size of approximately 0.8 kb. FSH $\beta$-subunit mRNA also was detected out 1.8 kb. It is the same size of the FSH $\beta$ -subunit mRNA cloned. The intensity of $\alpha$-subunit mRNA was greater than that of the $\beta$-subunit suggesting that the expression of $\alpha$ -subunit was dominant in the equine anterior pituitary. Thus, the subunit mRNA levels seem to be independently regulated and their imbalance may account for differences in the quantities of $\alpha$- and $\beta$-subunits in the equine placenta and pituitary.

  • PDF