• Title/Summary/Keyword: pitch strength

Search Result 196, Processing Time 0.033 seconds

A Study on the Bonding Performance of COG Bonding Process (COG 본딩의 접합 특성에 관한 연구)

  • Choi, Young-Jae;Nam, Sung-Ho;Kim, Kyeong-Tae;Yang, Keun-Hyuk;Lee, Seok-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.28-35
    • /
    • 2010
  • In the display industry, COG bonding method is being applied to production of LCD panels that are used for mobile phones and monitors, and is one of the mounting methods optimized to compete with the trend of ultra small, ultra thin and low cost of display. In COG bonding process, electrical characteristics such as contact resistance, insulation property, etc and mechanical characteristics such as bonding strength, etc depend on properties of conductive particles and epoxy resin along with ACF materials used for COG by manufacturers. As the properties of such materials have close relation to optimization of bonding conditions such as temperature, pressure, time, etc in COG bonding process, it is requested to carry out an in-depth study on characteristics of COG bonding, based on which development of bonding process equipment shall be processed. In this study were analyzed the characteristics of COG bonding process, performed the analysis and reliability evaluation on electrical and mechanical characteristics of COG bonding using ACF to find optimum bonding conditions for ACF, and performed the experiment on bonding characteristics regarding fine pitch to understand the affection on finer pitch in COG bonding. It was found that it is difficult to find optimum conditions because it is more difficult to perform alignment as the pitch becomes finer, but only if alignment has been made, it becomes similar to optimum conditions in general COG bonding regardless of pitch intervals.

Enhancing the oxidative stabilization of isotropic pitch precursors prepared through the co-carbonization of ethylene bottom oil and polyvinyl chloride

  • Liu, Jinchang;Shimanoe, Hiroki;Nakabayashi, Koji;Miyawaki, Jin;Choi, Jong-Eun;Jeon, Young-Pyo;Yoon, Seong-Ho
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.358-364
    • /
    • 2018
  • An isotropic pitch precursor for fabricating carbon fibres was prepared by co-carbonization of ethylene bottom oil(EBO) and polyvinyl chloride (PVC). Various pre-treatments of EBO and PVC, and a high heating rate of $3^{\circ}C/min$ with no holding time, were evaluated for their effects on the oxidative stabilization process and the mechanical stability of the resulting fibres. Our stabilization process enhanced the volatilization, oxidative reaction and decomposition properties of the precursor pitch, while the addition of PVC both decreased the onset time and accelerated the oxidative reaction. Aliphatic carbon groups played a critical role in stabilization. Microstructural characterization indicated that these were first oxidised to carbon-oxygen single bonds and then converted to carbon-oxygen double bonds. Due to the higher heating rate and lack of a holding step during processing,the resulting thermoplastic fibers did not completely convert to thermoset materials, allowing partially melted, adjacent fibres to fuse. Fiber surfaces were smooth and homogeneous. Of the various methods evaluated herein, carbon fibers derived from pressure-treated EBO and PVC exhibited the highest tensile strength. This work shows that enhancing the naphthenic component of a pitch precursor through the co-carbonization of pre-treated EBO with PVC improves the oxidative properties of the resulting carbon fibers.

Effect of Listening Biographies on Frequency Following Response Responses of Vocalists, Violinists, and Non-Musicians to Indian Carnatic Music Stimuli

  • J, Prajna Bhat;Krishna, Rajalakshmi
    • Korean Journal of Audiology
    • /
    • v.25 no.3
    • /
    • pp.131-137
    • /
    • 2021
  • Background and Objectives: The current study investigates pitch coding using frequency following response (FFR) among vocalists, violinists, and non-musicians for Indian Carnatic transition music stimuli and assesses whether their listening biographies strengthen their F0 neural encoding for these stimuli. Subjects and Methods: Three participant groups in the age range of 18-45 years were included in the study. The first group of participants consisted of 20 trained Carnatic vocalists, the second group consisted of 13 trained violinists, and the third group consisted of 22 non-musicians. The stimuli consisted of three Indian Carnatic raga notes (/S-R2-G3/), which was sung by a trained vocalist and played by a trained violinist. For the purposes of this study, the two transitions between the notes T1=/S-R2/ and T2=/R2-G3/ were analyzed, and FFRs were recorded binaurally at 80 dB SPL using neuroscan equipment. Results: Overall average responses of the participants were generated. To assess the participants' pitch tracking to the Carnatic music stimuli, stimulus to response correlation (CC), pitch strength (PS), and pitch error (PE) were measured. Results revealed that both the vocalists and violinists had better CC and PS values with lower PE values, as compared to non-musicians, for both vocal and violin T1 and T2 transition stimuli. Between the musician groups, the vocalists were found to perform superiorly to the violinists for both vocal and violin T1 and T2 transition stimuli. Conclusions: Listening biographies strengthened F0 neural coding, with respect to the vocalists for vocal stimulus at the brainstem level. The violinists, on the other hand, did not show such preference.

Effect of Listening Biographies on Frequency Following Response Responses of Vocalists, Violinists, and Non-Musicians to Indian Carnatic Music Stimuli

  • Prajna, Bhat J;Rajalakshmi, Krishna
    • Journal of Audiology & Otology
    • /
    • v.25 no.3
    • /
    • pp.131-137
    • /
    • 2021
  • Background and Objectives: The current study investigates pitch coding using frequency following response (FFR) among vocalists, violinists, and non-musicians for Indian Carnatic transition music stimuli and assesses whether their listening biographies strengthen their F0 neural encoding for these stimuli. Subjects and Methods: Three participant groups in the age range of 18-45 years were included in the study. The first group of participants consisted of 20 trained Carnatic vocalists, the second group consisted of 13 trained violinists, and the third group consisted of 22 non-musicians. The stimuli consisted of three Indian Carnatic raga notes (/S-R2-G3/), which was sung by a trained vocalist and played by a trained violinist. For the purposes of this study, the two transitions between the notes T1=/S-R2/ and T2=/R2-G3/ were analyzed, and FFRs were recorded binaurally at 80 dB SPL using neuroscan equipment. Results: Overall average responses of the participants were generated. To assess the participants' pitch tracking to the Carnatic music stimuli, stimulus to response correlation (CC), pitch strength (PS), and pitch error (PE) were measured. Results revealed that both the vocalists and violinists had better CC and PS values with lower PE values, as compared to non-musicians, for both vocal and violin T1 and T2 transition stimuli. Between the musician groups, the vocalists were found to perform superiorly to the violinists for both vocal and violin T1 and T2 transition stimuli. Conclusions: Listening biographies strengthened F0 neural coding, with respect to the vocalists for vocal stimulus at the brainstem level. The violinists, on the other hand, did not show such preference.

Characterization of Milled Carbon Fibers-filled Pitch-based Carbon Paper for Gas Diffusion Layer (미분쇄 탄소섬유가 첨가된 피치계 탄소섬유기반 기체확산층용 탄소종이 특성)

  • Ham, Eun-Kwang;Yoon, Dong-Ho;Kim, Byoung-Suhk;Seo, Min-Kang
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.262-268
    • /
    • 2016
  • In this work, the pitch-based carbon paper (P-CP) was prepared by re-impregnating of binder pitches and PAN-based milled carbon fibers (MCF) at low temperature carbonization process. The influence of MCF content on physicochemical properties of MCF/P-CP was investigated. As a result, the tensile strength of MCF/P-CP was increased sharply from 10 wt.% to 20 wt.% of MCF. Also, the increase of MCF content led to the decrease of interfacial contact resistivity and the improvement of electrical and thermal conductivity of MCF/P-CP. These results were probably due to the increase of density of MCF/P-CP, resulting in the formation of electrically and thermally conductive paths of the carbon paper.

Attributes of sound and emotional type in the Eastern philosophy - Focused on Chinese Akron(樂論) and Chosun Chongiron(天機論) (동양 철학에서의 소리의 속성과 감성 유형 - 중국의 악론과 조선의 천기론을 중심으로)

  • Kihl, Tae-Suk
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.215-224
    • /
    • 2010
  • This paper is designed to investigate the attributes of sound and emotion resided in traditional Eastern thought by looking into acoustic theories such as Sunguarakron (聲有哀樂論) in Akgi(樂記), Sungmuaerakron(聲無哀樂論) of Haegang and Akhakgebum(樂學軌範), Chongiron(天機論) in Choson(朝鮮) dynasty. Six types of emotions, namely sadness, pleasure, happiness, anger, respect, and, affection (哀心, 樂心, 喜心, 怒心, 敬心, 愛心) which is related with sounds was closely reviewed through Akgi(樂記). Also attributes of sounds such as loudness, sharpness, pitch, roughness, fluctuation strength and pleasantness was corresponded with plain & complicated(單複), pitch, good & bad(善惡) slow & fast(舒疾), loud & quiet(猛靜) respectively. In addition to this, this paper is narrowed down that the basic ideas about sound and emotions of Choson(朝鮮) confucian scholar was based on theory of music and rhythm on Akgi(樂記). Furthermore, the relationship between expressed sound and emotions which was revealed in Chongiron(天機論) has been examined. Finally, various applied research and studies will be promoted through this study, because this study will provide foundation which supports sounds and emotions of Eastern.

  • PDF

New emerging surface treatment of GFRP Hybrid bar for stronger durability of concrete structures

  • Park, Cheolwoo;Park, Younghwan;Kim, Seungwon;Ju, Minkwan
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.593-610
    • /
    • 2016
  • In this study, an innovative and smart glass fiber-reinforced polymer (GFRP) hybrid bar was developed for stronger durability of concrete structures. As comparing with the conventional GFRP bar, the smart GFRP Hybrid bar can promise to enhance the modulus of elasticity so that it makes the cracking reduced than the case when the conventional GFRP bar is used. Besides, the GFRP Hybrid bar can effectively resist the corrosion of conventional steel bar by the GFRP outer surface on the steel bar. In order to verify the bond performance of the GFRP hybrid bar for structural reinforcement, uniaxial pull-out test was conducted. The variables were the bar diameter and the number of strands and pitch of the fiber ribs. Tensile tests showed a excellent increase in the modulus of elasticity, 152.1 GPa, as compared to that of the pure GFRP bar (50 GPa). The stress-strain curve was bi-linear, so that the ductile performance could be obtained. For the bond test, the entire GFRP hybrid bar test specimens failed in concrete splitting due to higher shear strength resulting in concrete crushing as a function of bar deformation. Investigation revealed that an increase in the number of strands of fiber ribs enhanced the bond strength, and the pitch guaranteed the bond strength of 19.1 mm diameter hybrid bar with 15.9 mm diameter of core section of deformed steel the ACI 440 1R-15 equation is regarded as more suitable for predicting the bond strength of GFRP hybrid bars, whereas the CSA S806-12 prediction is considered too conservative and is largely influenced by the bar diameter. For further study, various geometrical and material properties such as concrete cover, cross-sectional ratio, and surface treatment should be considered.

Properties of Friction Welding of Dissimilar Metals WCu-Cu Weld for Electrical Contact Device (전기접점용 이종금속 WCu-Cu 접합재의 마찰압점 특성)

  • An, Yong-Ho;Yun, Gi-Gap;Min, Taek-Gi;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.4
    • /
    • pp.239-245
    • /
    • 2000
  • A copper-tungsten sintered alloy(WCu) has been friction-welded to a tough pitch copper (Cu) in order to investigate friction weldability. The maximum tensile strength of the SWu-Cu friction welded joints had cp to 96% of those of the Cu base metal under the condition of friction time 0.6sec, friction pressure 45MPa, upset pressure 125MPa and upset time 5.0sec. And it is confirmed that the tensile strength of friction welded joints are influenced highly by upset pressure rather than friction time. And it is considered that mixed layer was formed in the Cu adjacent side to the weld interface, W particles included in mixed layer induced fracture in the Cu adjacent side to the weld interface and also, thickness of mixed layer was reduced as upset pressure increase.

  • PDF

Compressional Behavior of Carbon Nanotube Reinforced Mesophase Pitch-based Carbon Fibers

  • Ahn Young-Rack;Lee Young-Seak;Ogale A.A.;Yun Chang-Hun;Park Chong-Rae
    • Fibers and Polymers
    • /
    • v.7 no.1
    • /
    • pp.85-87
    • /
    • 2006
  • The tensile-recoil compressional behavior of the carbon nanotube reinforced mesophase pitch (MP)-based composite carbon fibers (CNT-re-MP CFs) was investigated by using Instron and SEM. The CNT-re-MP CFs exhibited improved, or at least equivalent, compressive strength as compared with commercial MP-based carbon fibers. Particularly, when CNT of 0.1 wt% was reinforced, the ratios of recoil compressive strengths to tensile strength of CNT-re-MPCFs were much higher (the difference is at least 10 % or higher) than those for the commercial counterparts and even than those for PAN-based commercial carbon fibers. FESEM micrographs showed somewhat different fractography from that of a typical shear failure as the CNT content increased.

An Experimental Study on the Mechanical Properties of Fiber Reinforced Cement Composites Utilizing by-Products(II) (산업부산물을 활용한 섬유보강 시멘트 복합체의 역학적 특성에 관한 실험적 연구(II))

  • 박승범;윤의식;조청휘
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.144-149
    • /
    • 1993
  • The results of an experimental study on the manufacture and the mechanical properties of carbon fiber reinforced silica fume.cement composites and light weight fly ash.cement composites are presented in this paper. The CF reinforced silica fume.cement composites using silica fume early strength cement were prepared with Pan-derived or Pitch-derived CF, and Lt. Wt, fly ash.cement composites using fly ash, early strength cement, perlite and a small amount of foaming agent. As the test results show, the flexural strength, toughness and ductility of CF reinforced silica fume .cement composites were remarkably increased by fiber contents. Also, the manufacturing process technology of Lt. Wt. fly ash.cement composites was developed and its optimum mix proportions were proposed. And the compressive and flexural strength of the fly ash.cement composites by hot water cured were improved even more than by moist cured, but are decreased by increasing fly ash replaced ratio for cement.

  • PDF