• Title/Summary/Keyword: pitch span

Search Result 21, Processing Time 0.023 seconds

Interaction of native language interference and universal language interference on L2 intonation acquisition: Focusing on the pitch range variation (L2 억양에서 나타나는 모국어 간섭과 언어 보편적 간섭현상의 상호작용: 피치대역을 중심으로)

  • Yune, Youngsook
    • Phonetics and Speech Sciences
    • /
    • v.13 no.4
    • /
    • pp.35-46
    • /
    • 2021
  • In this study, we examined the interactive aspects between pitch reduction phenomena considered a universal language phenomenon and native language interference in the production of L2 intonation performed by Chinese learners of Korean. To investigate their interaction, we conducted an acoustic analysis using acoustic measures such as pitch span, pitch level, pitch dynamic quotient, skewness, and kurtosis. In addition, the correlation between text comprehension and pitch was examined. The analyzed material consisted of four Korean discourses containing five and seven sentences of varying difficulty. Seven Korean native speakers and thirty Chinese learners who differed in their Korean proficiency participated in the production test. The results, for differences by language, showed that Chinese had a more expanded pitch span, and a higher pitch level than Korean. The analysis between groups showed that at the beginner and intermediate levels, pitch reduction was prominent, i.e., their Korean was characterized by a compressed pitch span, low pitch level, and less sentence internal pitch variation. Contrariwise, the pitch use of advanced speakers was most similar to Korean native speakers. There was no significant correlation between text difficulty and pitch use. Through this study, we observed that pitch reduction was more pronounced than native language interference in the phonetic layer.

Optimal Aerodynamic Design and Performance Analysis for Pitch-Controlled HAWT (가변 피치형 수평축 풍력 터빈의 공력 최적설계 및 피치제어 성능 연구)

  • Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.891-898
    • /
    • 2007
  • Optimal aerodynamic design for the pitch-controlled horizontal axis wind turbine and its aerodynamic performance for various pitch angles are performed numerically by using the blade element momentum theory. The numerical calculation includes effects such as Prandtl‘s tip loss, airfoil distribution, and wake rotation. Six different airfoils are distributed along the blade span, and the special airfoil i.e. airfoil of 40% thickness ratio is adopted at the hub side to have structural integrity. The nonlinear chord obtained from the optimal design procedure is linearized to decrease the weight and to increase the productivity with very little change of the aerodynamic performance. From the comparisons of the power, thrust, and torque coefficients with corresponding values of different pitch angles, the aerodynamic performance shows delicate changes for just $3^{\circ}$ increase or decrease of the pitch angle. For precisive pitch control, it requires the pitch control algorithm and its drive mechanism below $3^{\circ}$ increment of pitch angle. The maximum torque is generated when the speed ratio is smaller than the designed one.

Characteristics of Noise Emission from Wind Turbine Generator According to Methods of Power Regulation (파워 조절 방법에 따른 풍력 터번 발전기의 방사 소음 특성)

  • Jung, Sung-Soo;Cheung, Wan-Sup;Shin, Su-Hyun;Chun, Se-Jong;Choi, Yong-Moon;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.941-945
    • /
    • 2006
  • In the development of electricity generating wind turbines for wind farm application, only two types have survived as the methods of power regulation; stall regulation and fun span pitch control. The sound measurement procedures of IEC 61400-11 are applied to field test and evaluation of noise emission from each of 1.5 MW and 660 kW wind turbine generators (WTG) utilizing the stall regulation and the pitch control for the power regulation, respectively. Apparent sound power level, wind speed dependence and third-octave band levels are evaluated for both of WTGs. It is found that while 1.5 MW WTG using the stall control is found to emit lower sound power than 660 kW one using the pitch control at low wind speed (below 8 m/s), sound power from the former becomes greater than that of the latter in the higher wind speed. Equivalent continuous sound pressure levels (ECSPL) of the stall control type of WTG vary more widely with wind speed than those of the pitch control type of WTG These characteristics are believed to be strongly dependent on the basic difference of the airflow around the blade between the stall regulation and the pitch control types of WTG. These characteristics according to the methods of power regulation lead to the very different noise emission characteristics of WTG depending on the seasons because the average wind speed in summer is lower than the critical velocity over which the airflow on the suction side of blade in the stall types of WT are separated. These results propose that, in view of environmental noise regulation, the developer of wind farm should give enough considerations to the choice of power regulation of their WTG based on the weather conditions of potential wind farm locations.

  • PDF

Mechanical Loads Analysis and Control of a MW Wind Turbine (MW 규모 풍력 터빈의 기계적 하중 특성 해석 및 제어)

  • Nam, Yoon-Su;Choi, Han-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.26-33
    • /
    • 2010
  • A multi-MW wind turbine is a huge mechanical structure, of which the rotor diameter is more or less than 100 m. Rotor blades experience unsymmetric mechanical loads caused by the interaction of incoming wind with the tower and wind shear effect. These mechanical loads are transferred to the entire structure of the wind turbine and are known as the major reasons for shortening the life span of the wind turbine. Therefore, as the size of wind turbine gets bigger, the mitigation of mechanical loads becomes more important issue in wind turbine control system design. In this paper, a concept of an individual pitch control(IPC), which minimizes the mechanical loads of rotor blades, is introduced, and simulation results using IPC are discussed.

Identification of bridge bending frequencies through drive-by monitoring compensating vehicle pitch detrimental effect

  • Lorenzo Benedetti;Lorenzo Bernardini;Antonio Argentino;Gabriele Cazzulani;Claudio Somaschini ;Marco Belloli
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.305-321
    • /
    • 2022
  • Bridge structural health monitoring with the aim of continuously assessing structural safety and reliability represents a topic of major importance for worldwide infrastructure managers. In the last two decades, due to their potential economic and operational advantages, drive-by approaches experienced growing consideration from researcher and engineers. This work addresses two technical topics regarding indirect frequency estimation methods: bridge and vehicle dynamics overlapping, and bridge expansion joints impact. The experimental campaign was conducted on a mixed multi-span bridge located in Lombardy using a Ford Galaxy instrumented with a mesh of wireless accelerometers. The onboard time series were acquired for a number of 10 passages over the bridge,performed at a travelling speed of 30 km/h, with no limitations imposed to traffic. Exploiting an ad-hoc sensors positioning, pitch vehicle motion was compensated, allowing to estimate the first two bridge bending frequencies from PSD functions; moreover, the herein adopted approach proved to be insensitive to joints disturbance. Conclusively, a sensitivity study has been conducted to trace the relationship between estimation accuracy and number of trips considered in the analysis. Promising results were found, pointing out a clear positive correlation especially for the first bending frequency.

Aerodynamic analysis and control mechanism design of cycloidal wind turbine adopting active control of blade motion

  • Hwang, In-Seong;Lee, Yun-Han;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.11-16
    • /
    • 2007
  • This paper describes the cycloidal wind turbine, which is a straight blade vertical axis wind turbine using the cycloidal blade system. Cycloidal blade system consists of several blades rotating about an axis in parallel direction. Each blade changes its pitch angle periodically. Cycloidal wind turbine is different from the previous turbines. The wind turbine operates with optimum rotating forces through active control of the blade to change pitch angle and phase angle according to the changes of wind direction and wind speed. Various numerical experiments were conducted to develop a small vertical axis wind turbine of 1 kW class. For this numerical analysis, the rotor system equips four blades consisting of a symmetric airfoil NACA0018 of 1.0m in span, 0.22m in chord and 1.0m in radius. A general purpose commercial CFD program, STAR-CD, was used for numerical analysis. PCL of MSC/PATRAN was used for efficient parametric auto mesh generation. Variables of wind speed, pitch angle, phase angle and rotating speed were set in the numerical experiments. The generated power was obtained according to the various combinations of these variables. Optimal pitch angle and phase angle of cycloidal blade system were obtained according to the change of the wind direction and the wind speed. Based on data obtained from the above analysis, control device was designed. The wind direction and the wind speed were sensed by a wind indicator and an anemometer. Each blades were actuated to optimal performance values by servo motors.

Characteristics of Noise Emission from Wind Turbine According to Methods of Power Regulation (파워 조절 방법에 따른 풍력 터빈의 방사 소음 특성)

  • Cheong, Cheol-Ung;Cheung, Wan-Sup;Shin, Su-Hyun;Chun, Se-Jong;Choi, Yong-Moon;Jung, Sung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.864-871
    • /
    • 2006
  • In the development of electricity generating wind turbines for wind farm application, only two types have survived as the methods of power regulation; stall regulation and full span pitch control. The main purpose of this paper is to experimentally identify the characteristics of noise emission of wind turbines according to the power regulation types. The sound measurement procedures of IEC 61400-11 are applied to field test and evaluation of noise emission from each of 1.5 MW and 660 kW wind turbines (WT) utilizing the stall regulation and the pitch control for the power regulation, respectively. Apparent sound power level, wind speed dependence, third-octave band levels and tonality are evaluated for both of WTs. It is observed that equivalent continuous sound pressure levels (ECSPL) of the stall control type of WT continue to increase with increasing wind speed whereas those of the pitch control type of WT show less correlation with wind speed. These observed characteristics are believed to be due to the different airflow patterns around the blade between the stall regulation and the pitch control types of WT; the airflow on the suction side of blade in the stall types of WT are separated at the high wind speed. It is also found that the 1.5 MW WT using the stall control emits lower sound power than 660 kW one using the pitch control at wind speeds below 8m/s, whereas sound power of the former becomes higher than that of the latter in the wind speed over 8m/s. This wind-speed dependence of sound power leads to the very different noise omission characteristics of WTs depending on the seasons because the average wind speed in summer is lower than 8m/s whereas that in summer is higher. Based on these experimental observations, it is proposed that, in view of environmental noise regulation, the developer of wind farm should give enough considerations to the choice of power regulation of their WTG based on the weather conditions of potential wind farm locations.

NUMERICAL STUDY ON THE CLOCKING EFFECT IN A 1.5 STAGE AXIAL TURBINE (1.5단 축류터빈에서의 Clocking 효과에 관한 수치적 연구)

  • Park, Jong-Il;Choi, Min-Suk;Baek, Je-Hyun
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.1-8
    • /
    • 2006
  • Clocking effects of a stator on the performance and internal flow in an UTRC 1.5 stage axial turbine are investigated using a three-dimensional unsteady flow simulation. Six relative positions of two rows of stator are investigated by positioning the second stator being clocked in a step of 1/6 pitch. The relative efficiency benefit of about 1% is obtained depending on the clocking positions. However, internal flows have some different characteristics from that in the previous study at the best and worst efficiency positions, since the first stator wake is mixed out with the rotor wake before arriving at the leading edge of the second stator. Instead of the first stator wake, it is found that the wake interaction of the first stator and rotor has a important role on a relative efficiency variation at each clocking position. The time-averaged local efficiency along the span at the maximum efficiency is more uniform than that at the minimum efficiency. That is, the spanwise efficiency distribution at the minimum efficiency has larger values in mid-span but smaller values near the hub and casing in comparison to those at the maximum efficiency. Moreover, the difference between maximum and minimum instantaneous efficiencies during one period is found to be smaller at the maximum efficiency than at the minimum efficiency.

Numerical Study on the Clocking Effect in a 1.5 Stage Axial Turbine (1.5단 축류 터빈에서의 Clocking 효과에 관한 수치적 연구)

  • Park, Jong-Il;Choi, Min-Suk;Baek, Je-Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.473-480
    • /
    • 2005
  • Clocking effects of a stator on the performance and internal flow in an UTRC 1.5 stage axial turbine are investigated using a three-dimensional unsteady flow simulation. Six relative positions of two rows of stator are investigated by positioning the second stator being clocked in a step of 1/6 pitch. The relative efficiency benefit of about 1% is obtained depending on the clocking positions. However, internal flows have some different characteristics from that in the previous study at the best and worst efficiency positions, since be first stator wake is mixed out with the rotor wake before arriving at the leading edge of the second stator. Instead of the first stator wake, it is found that the wake interaction of the first stator and rotor has a important role on a relative efficiency variation at each clocking position. The time-averaged local efficiency along the span at the maximum efficiency is more uniform than that at the minimum efficiency. That is, the spanwise efficiency distribution at the minimum efficiency has larger values in mid-span but smaller values near the hub and casing in comparison to those at the maximum efficiency. Moreover, the difference between maximum and minimum instantaneous efficiencies during one period is found to be smaller at the maximum efficiency than at the minimum efficiency.

  • PDF