• 제목/요약/키워드: pitch gain-scheduling

검색결과 9건 처리시간 0.031초

풍력터빈 축 진동 응답에 대한 피치 게인-스케쥴링의 효과 (An Effect of Pitch Gain-Scheduling on Shaft Vibration Response of Wind Turbine)

  • 임채욱;조준철
    • 한국유체기계학회 논문집
    • /
    • 제15권2호
    • /
    • pp.36-40
    • /
    • 2012
  • Pitch control of wind turbine is activated above rated wind speed for the purpose of rated power regulation. When we design pitch controller, its gain-scheduling is essential due to nonlinear characteristics of aerodynamic torque. In this study, 2-mass model including a vibration mode of drive-train for a 2 MW wind turbine is considered and pitch control with gain-scheduling using a linearization analysis of the nonlinear aerodynamic torque is applied. Some simulation results for the pitch gain-scheduling under step wind speed are presented and investigated. It is shown that gain-scheduling in pitch control is important especially in the region of high wind speeds when there exists a vibration mode of drive-train.

Bladed S/W를 이용한 2MW급 풍력터빈에 대한 피치 PI 제어기의 계단응답 고찰 (An Investigation on Step Responses of Pitch PI Controller for a 2MW Wind Turbine Using Bladed S/W)

  • 임채욱
    • 한국유체기계학회 논문집
    • /
    • 제18권1호
    • /
    • pp.59-64
    • /
    • 2015
  • The pitch control system in wind turbines becomes more and more important as the wind turbines are larger in multi-MW size. PI controller has been applied in most pitch controllers and it has been known that gain-scheduling is essential for pitch control of wind turbines. A demo model of 2 MW wind turbine which represents the whole dynamics of wind turbine including dynamic behaviors of blade, tower and rotational shaft is given in the commercial Bladed S/W for real wind turbines. In this paper, some results on step responses of the pitch PI controller and effectiveness of gain-scheduled pitch PI controller are presented through the Bladed S/W for the 2 MW wind turbine.

유도탄 제어기의 이득-스케듈링에 관한 연구 (A study on the gain-scheduling of missile autopilot)

  • 송찬호;김윤식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.355-360
    • /
    • 1991
  • A method of autopilot gain-scheduling is presented for missiles which have heavy aerodynamic coupling between pitch and yaw channels due to high maneuverability. Pitch and yaw, autopilot are cross-coupled, and their feedback gains are scheduled by total acceleration and bank angle for given Mach number and height. Bank angle information is obtained by using a simple estimator. By computer simulation, it is shown that the proposed method is superior to other existing methods.

  • PDF

MW급 직접구동형 풍력터빈시스템을 위한 영구자석 동기발전기의 게인 스케쥴링 속도제어기에 대한 연구 (A Study on the Gain Scheduling Speed Controller of Permanent Magnet Synchronous Generators for MW-Class Direct-Driven Wind Turbine Systems)

  • 최영식;유동녕;최한호;정진우
    • 조명전기설비학회논문지
    • /
    • 제25권8호
    • /
    • pp.48-59
    • /
    • 2011
  • This paper presents a new gain scheduling speed controller of permanent magnet synchronous generators(PMSG) for MW-class direct-driven wind turbine systems. The proposed gain scheduling speed controller performs the speed tracking at more than one operating point, and the first-order torque observer estimates the turbine torque which is needed to precisely control the speed of PMSG. The proposed speed controller verifies that the PMSG can successfully follow the reference speed which is determined via the maximum power point tracking(MPPT) control and pitch control under turbulent wind conditions. The proposed speed control algorithm is simulated using Simulink and its performance is confirmed through comparison with the results by PI control method.

2MW급 직접구동형 풍력터빈 제어시스템 개발 (Development of Control System for 2MW Direct Drive Wind Turbine)

  • 문준모;장정익;윤광용;조광명;이권희
    • 풍력에너지저널
    • /
    • 제2권1호
    • /
    • pp.90-96
    • /
    • 2011
  • The purpose of this paper is to describe the control system for optimal performance of 2MW gearless PMSG wind turbine system, and to afford some techniques of the algorithm selection and design optimization of the wind turbine control system through analysis of load calculation and control characteristic. Wind turbine control system is composed of the main control system and remote control and monitoring system. The main control system is industrial PC based controller, and the remote control and monitoring system is a server based computer system. The main control system has a supervisory control of the wind turbine with operation procedures and power-speed control through the torque control by pitch angle. There are some applications to optimize the wind turbine system at the starting mode with increasing of rotor speed, and cut-in operating mode to prevent trundling cut-in and cut-out, a gain scheduling of pitch PID controller, torque scheduling and limitation of generation power by temperature limitation or remote command by remote control and monitoring system. Also, the server operation program of the remote control and monitoring system and the design of graphical display are described in this paper.

무인항공기의 적응제어 법칙을 이용한 피치 기동 연구 (Pitch-axis Maneuver of UAVs by Adaptive Control Approach)

  • 방효충
    • 한국항공우주학회지
    • /
    • 제38권12호
    • /
    • pp.1170-1176
    • /
    • 2010
  • 본 연구는 적응제어기법을 이용한 무인항공기이 피치 자세 기동에 대한 연구 내용을 소개한다. 모델기반적응제어(Model Reference Adaptive Control)을 이용하여 피치 자세각과 엘리베이터 입력 사이의 피드백 선형화 과정에서 발생하는 불확실성을 처리하였다. 모델 불활실성 파라미터는 피드백 제어기가 작동하는 중에 적응법칙을 이용하여 추정할 수 있도록 설계 되었다. 안정화 제어기에 의해 달성되는 최종 피치 자세각에 대한 분석을 통해 폐루프 시스템의 특성을 파악할 수 있도록 하였다. 제안된 제어 기법은 기존 제어기에서 주로 채택하고 있는 선형화나 게인 스케쥴링등의 과정이 필요하지 않아 상당한 모델 오차가 존재하는 상황에서 무인항공기의 고기동 피치 제어기 설계에 도움을 줄 것으로 생각한다.

Alleviating the Tower Mechanical Load of Multi-MW Wind Turbines with LQR Control

  • Nam, Yoonsu;Kien, Pham Trung;La, Yo-Han
    • Journal of Power Electronics
    • /
    • 제13권6호
    • /
    • pp.1024-1031
    • /
    • 2013
  • This paper addresses linear quadratic regulation (LQR) for variable speed variable pitch wind turbines. Because of the inherent nonlinearity of wind turbines, a set of operating conditions is identified and then a LQR controller is designed for each of the operating points. The feedback controller gains are then interpolated linearly to get a control law for the entire operating region. In addition, the aerodynamic torque and effective wind speed are estimated online to get the gain-scheduling variable for implementing the controller. The potential of this method is verified through simulation with the help of MATLAB/Simulink and GH Bladed. The performance and mechanical load when using LQR are also compared with those obtained when using a PI controller.

A Gain-Scheduled Autopilot Design for a Bank-To-Turn Missile Using LMI Optimization and Linear Interpolation

  • Shin, Myoung-Ho;Chung, Myung-Jin;Lee, Chiul-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.48.3-48
    • /
    • 2001
  • A gain-scheduled autopilot design for a bank-to-turn (BTT) missile is developed by using the Linear Matrix Inequality (LMI) optimization technique and a state-space lineal interpolation method. The missile dynamics are brought to a quasilinear parameter varying (quasi-LPV) form. Robust linear control design method is used to obtain state feedback controllers for the LPV systems with exogenous disturbances at the frozen values of the scheduling parameters. Two gam-scheduled controllers for the pitch axis and the yaw/roll axis are constructed by linearly interpolating the robust state-feedback gains. The designed controller is applied to a nonlinear six-degree-of-freedom (6-DOF) simulations.

  • PDF

KSR-III 과학로켓의 자세제어기 설계와 비행시험 (Attitude Controller Design and Flight Test of KSR-III Sounding Rocket)

  • 노웅래;조현철;안재명;최형돈
    • 한국항공우주학회지
    • /
    • 제32권3호
    • /
    • pp.88-94
    • /
    • 2004
  • KSR-III 로켓은 액체추진 엔진을 사용한 과학로켓이며, 추력 비행중 피치 및 요 자세제어를 위해 추력벡터제어 방식을 사용하고, 롤 자세를 제어하기 위해 냉가스 추력기를 사용하였다. 본 논문은 KSR-III 로켓의 3축 자세제어를 위해 설계된 자세제어기의 구조와 이득 스케쥴링, 자세 안정성 분석결과에 대해 소개한다. 설계된 자세제어기는 국산화 개발된 관성 항법시스템의 비행소프트웨어로 구현되었는데 비행시험에서 완벽히 작동하였다. 비행에서 측정된 데이터는 시뮬레이션 결과와 거의 일치되었다.