• 제목/요약/키워드: piston-like displacement

검색결과 2건 처리시간 0.015초

가변용량형 피스톤 펌프의 안정적인 유량/압력제어를 위한 설계보상 (A Design Compensation for Stable Flow/Pressure Control of Variable Displacement Type Piston Pump)

  • 정동수;김형의;강이석
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.165-174
    • /
    • 2007
  • Variable displacement type piston pump uses various controllers for controlling more than one state quantity like pressure, flow, power, and so on. These controllers need the mathematical model closely expressing dynamic behavior of pump for analyzing the stability of control systems which usually use various kinds of state variables. This paper derives the nonlinear mathematical model for variable displacement type piston pump. This model consists of two 1st oder differential equations by the continuity equations and one 2nd oder differential equation by the motion equation. To simplify the model we obtain the linear state variable model by differentiating the three nonlinear equations. And we verify this linearized model by comparison of simulation with experimentation and analyze the stability for the flow/pressure control. Finally this paper suggests the design compensation to ensure the stability of the systems.

Characteristics of waterflood at low rate in low permeability sandstones based on the CT scanning

  • Mo, S.Y.;Lei, Q.;Lei, G.;Gai, S.H.;Liu, Z.K.
    • Geosystem Engineering
    • /
    • 제21권6호
    • /
    • pp.344-351
    • /
    • 2018
  • It is reported that the flooding rate in low permeability sandstones is low and the oil recovery is hard to increase after water breakthrough. Understanding characteristics of waterflood is hence important for the recovery improvement. In this work, flooding tests on low permeability sandstones were conducted. The corresponding flooding characteristics were investigated by means of CT scanning and Nuclear Magnetic Resonance. Effects of irreducible water and different rates were also discussed in detail. Experimental results reveal a piston-like displacement at a low rate in low permeability samples. The saturation profile is steep and almost vertical to the forward direction. The results at a low rate confirm that once water broke through, increasing the flooding rate or flooding time can hardly reduce the remaining oil inside the sample. It is probably due to the high pore-throat ratio proven by rate-controlled mercury. Results also confirm that the presence of initial water enhanced sweep efficiency substantially. On one hand, because water had previously occupied the small pores, the subsequent oil can only invade relatively large pores and became more movable. On the other hand, stable collars can not form due to the steep front, which may suppress the snap-off.