• Title/Summary/Keyword: piping stress

Search Result 272, Processing Time 0.026 seconds

Development for Life Assessment System for Pipes of Thermal Power Plants

  • Hyun, Jung-Seob;Heo, Jae-Sil;Kim, Doo-Young;Park, Min-Gyu
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.583-588
    • /
    • 2016
  • The high-temperature steam pipes of thermal power plants are subjected to severe conditions such as creep and fatigue due to the power plant frequently being started up and shut down. To prevent critical pipes from serious damage and possible failure, inspection methods such as computational analysis and online piping displacement monitoring have been developed. However, these methods are limited in that they cannot determine the life consumption rate of a critical pipe precisely. Therefore, we set out to develop a life assessment system, based on a three-dimensional piping displacement monitoring system, which is capable of evaluating the life consumption rate of a critical pipe. This system was installed at the "M" thermal power plant in Malaysia, and was shown to operate well in practice. The results of this study are expected to contribute to the increase safety of piping systems by minimizing stress and extending the actual life of critical piping.

Investigation of Residual Stress Distributions of Induction Heating Bended Austenitic Stainless Steel (316 Series) Piping (유도 가열 굽힘된 316 계열 오스테나이트 스테인리스 강 배관의 잔류응력 분포 고찰)

  • Kim, Jong Sung;Kim, Kyoung Soo;Oh, Young Jin;Chang, Hyun Young;Park, Heung Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.809-815
    • /
    • 2014
  • The induction heating bending process, which has been recently applied to nuclear piping, can generate residual stresses due to thermomechanical mechanism during the process. This residual stress is one of the crack driving forces that have important effects on crack initiation and propagation. However, previous studies have focused only on geometric shape variations such as the change in thickness and ovality. Moreover, very few studies are available on the effects of process variables on residual stresses. This study investigated the effects of process variables on the residual stress distributions of induction heating bended austenitic stainless steel (316 series) piping using parametric finite element analysis. The results indicated that the heat generation rate and feed velocity have significant effects on the residual stresses whereas the moment and bending angle have insignificant effects.

Effect of Finite Element Analysis Parameters on Weld Residual Stress of Dissimilar Metal Weld in Nuclear Reactor Piping Nozzles (유한요소 해석변수가 원자로 배관 노즐 이종금속용접부의 용접잔류응력에 미치는 영향)

  • Soh, Na-Hyun;Oh, Gyeong-Jin;Huh, Nam-Su;Lee, Sung-Ho;Park, Heung-Bae;Lee, Seung-Gun;Kim, Jong-Sung;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.1
    • /
    • pp.8-18
    • /
    • 2012
  • In early constructed nuclear power plants, Ni-based Alloys 82/182 had been widely used for dissimilar metal welds (DMW) as a weld filler metal. However, Alloys 82/182 have been proven to be susceptible to primary water stress corrosion cracking (PWSCC) in the nuclear primary water environment. The formation of crack due to PWSCC is also influenced by weld residual stresses. Thus, the accurate estimation of weld residual stresses of DMW is crucial to investigate the possibility of PWSCC and instability behaviors of crack due to PWSCC. In this context, the present paper investigates weld residual stresses of nuclear reactor piping nozzles based on 2-D axi-symmetric finite element analyses based on layer-based approach using maximum molten bead temperature. In particular, the effect of analysis parameters, i.e., a thickness of weld layer, an initial molten bead temperature, convection heat transfer coefficient, and geometric constraints on predicted weld residual stresses was investigated.

Effect of Nozzle on LBB Evaluation for Small Diameter Nuclear Piping (직경이 작은 원자력배관의 파단전누설 해석에 미치는 노즐의 영향)

  • Yu, Yeong-Jun;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1872-1881
    • /
    • 1996
  • LBB(Leak-Before-Break) analysis is performed for the highest stress location of each different type of mateerials in the nuclear piping line. In most cases, the highest stress occurs in the pipe and nozzle interface location. i.e. terminal end. The current finite element analysis approach utilizes the symmetry condition both for locations near the nozzle and for locationa away from the nozzle to minimize the size of the finite element model and to make analysis simple when calculating the J-integral values at the crack tip. In other words, the nozzle is not included in the finite element model. However, in reality, the symmetric condition is not applicable for the pipe-nozzle interface location. Because the pipe-nozzle interface location is asymmetric due to different stiffenss of the pipe and nozzle(both material and dimensions). The simplified analysis approach for pipe-nozzle interface locaiton is too conservative for a smaller diameter piping. In tlhis paper, various analyses are performed for the range of materials and crack sizes to evaluate the nozzle effect for a LBB anlaysis. This paper presents methodology for developing the piping evaluaiton diagram at the pipe-nozzle interface location.

Shape Optimization of an Air Conditioner Piping System (에어컨 배관 시스템의 형상 최적설계)

  • Min, Jun-Hong;Choi, Dong-Hoon;Jung, Du-Han
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1151-1157
    • /
    • 2009
  • Ensuring both product quality and reducing material cost are important issue for the design of the piping system of an air conditioner outdoor unit. This paper describes a shape optimization that achieves mass reduction of an air conditioner piping system while satisfying two design constraints on resonance avoidance and the maximum stress in the pipes. In order to obtain optimized design results with various analysis fields considered simultaneously, an automated multidisciplinary analysis system was constructed using PIAnO v.2.4, a commercial process integration and design optimization(PIDO) tool. As the first step of the automated analysis system, a finite element model is automatically generated corresponding to the specified shape of the pipes using a morphing technique included in HyperMesh. Then, the performance indices representing various design requirements (e.g. natural frequency, maximum stress and pipe mass) are obtained from the finite element analyses using appropriate computer-aided engineering(CAE) tools. A sequential approximate optimization(SAO) method was employed to effectively obtain the optimum design. As a result, the pipe mass was reduced by 18 % compared with that of an initial design while all the constraints were satisfied.

Study on Support Span Optimization of Pipeline System Considering Seismic Load (지진 하중을 고려한 배관시스템의 지지 스팬 최적화에 관한 연구)

  • Hur, Kwan-Do;Son, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.627-635
    • /
    • 2020
  • In this study, the optimal support span determination of pipeline system was carried out in consideration of the effects of seismic loads. The theoretical support and structural analysis were used to determine the optimal support span of piping system according to pipe diameter using theoretical and structural deflection criteria. The reliability of the analysis results was secured by comparing the structural and theoretical results. In particular, the optimum support span of piping system was obtained by considering the effects of seismic load, and the optimal support span of pipe diameter and piping system tended to be proportional to each other. When considering the effects of earthquakes on different pipe diameters(300~2,500mm), the span length is reduced by up to 48% at the allowable stress criterion, and the pipe span length is reduced by up to 5.9% at the deflection criterion. It can be seen that the effect of the seismic load on the determination of the piping span length has a greater effect on the stress than the displacement.

Integrity Assessment of Weld Repair of Bolt-Screw Assembly (볼트-나사 결합체의 보수용접 건전성 평가)

  • Kim, Maan-Won;Shin, In-Hwan;Lee, Kyoung-Soo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.79-86
    • /
    • 2015
  • The purpose of this study is to evaluate structural integrity of a weldment which is partially screwed and then welded. Two finite element models are constructed and solved: operating temperature and internal pressure are considered in the first simple model, and welding process and normal operating condition including heat-up process are simulated in the second model. Structural integrity assessment criteria are satisfied with both finite element models, therefore the repair weldment finely sustains structural integrity of this assembly and prevents leakage. Stresses are dramatically increased when weld residual stress is considered, but it should be considered as a secondary stress.

Calibration of Contact Depth for Evaluating Residual Stress using Instrumented Indentation Testing (연속압입시험법을 이용한 원전구조물의 잔류응력 평가를 위한 접촉깊이의 보정)

  • Kim, Young-Cheon;Kang, Seung-Kyun;Ahn, Hee-Jun;Kim, Kwang-Ho;Kwon, Dongil
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.1
    • /
    • pp.41-47
    • /
    • 2011
  • Residual stress is the key parameter for reliability and lifetime assessment because it can reduce the fatigue strength and fracture properties of industrial structures. Recently, instrumented indentation testing (IIT) has been widely used for evaluating it, since it does not need specific specimen and time-consuming procedure. However, conventional Oliver-Pharr method, which is used for calibrating contact depth to analyze indentation load-depth curve, cannot estimate plastic pile-up between indenter and surface of specimen. Here, we introduce f parameter which is the ratio of contact depth and maximum depth, to consider pile-up height. And, its application for evaluating residual stress of weldment is introduced.

Sensitivity Analysis for Allowable Operating Period Based on the Flaw Tolerance Evaluation of ASME BPVC Section XI Appendix L (ASME BPVC Section XI Appendix L의 결함허용평가에 따른 허용운전주기 민감도 분석)

  • Changsik Oh;Dooho Cho;Myung Jo Jhung
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.126-136
    • /
    • 2021
  • During operation of nuclear power plants, the fatigue assessment should be conducted repeatedly, considering changes of operating environments. For the case that cumulative usage factors (CUFs) may exceed the acceptance limit, flaw tolerance evaluation can be an alternative method to meet the regulatory requirements. In this respect, this paper analyzes the effects of the input variables for flaw tolerance evaluation based on ASME BPVC Section XI Appendix L. The reference analysis is performed for the example problem in NUREG/CR-6934. Then effects of the crack orientation, stress intensity factor solutions, thermal stress profiles, fatigue stress decomposition and fatigue crack growth curves are considered for the sensitivity analysis. The results show that the stress analysis considering the actual environment plays a crucial role in flaw tolerance evaluation.

Stress Distribution in the Dissimilar Metal Butt Weld of Nuclear Reactor Piping due to the Simulation Technique for the Repair Welding (보수용접 모사 방법에 따른 원자로 배관 이종금속 맞대기 용접부 응력 분포)

  • Lee, Hwee-Seung;Huh, Nam-Su;Kim, Jin-Su;Lee, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.649-655
    • /
    • 2013
  • During welding, the dissimilar metal butt welds of nuclear piping are typically subjected to repair welding in order to eliminate defects that are found during post-weld inspection. It has been found that the repair weld can significantly increase the tensile residual stress in the weldment, and therefore, accurate estimation of the weld residual stress due to repair weld, especially for dissimilar metal welds using Ni-based alloy 82/182 in nuclear components, is of great importance in order to assess susceptibility to primary water stress corrosion cracking. In the present study, the stress distributions of dissimilar metal butt welds in nuclear reactor piping subjected to repair weld were investigated based on detailed nonlinear finite element analyses. Particular emphasis was placed on the variation of the stress distribution in the dissimilar metal butt weld according to the finite element welding analysis sequence for the repair welding process.