• Title/Summary/Keyword: piping integrity

Search Result 200, Processing Time 0.03 seconds

Prediction of Weld Residual Stress of Narrow Gap Welds (협개선 용접부에 대한 용접잔류응력 예측)

  • Yang, Jun-Seog;Heo, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.79-83
    • /
    • 2010
  • The conventional welding technique such as shield metal arc welding has been mostly applied to the piping system of the nuclear power plants. It is well known that this welding technique causes the overheating and welding defects due to the large groove angle of weld. On the other hand, the narrow gap welding(NGW) technique has many merits, for instance, the reduction of welding time, the shrinkage of weld and the small deformation of the weld due to the small groove angle and welding bead width comparing with the conventional welds. These characteristics of NGW affect the deformation behavior and the distribution of welding residual stress of NGW, thus it is believed that the residual stress results obtained from conventional welding procedure may not be applied to structural integrity evaluation of NGW. In this paper, the welding residual stress of NGW was predicted using the nonlinear finite element analysis to simulate the thermal and mechanical effects of the NGW. The present results can be used as the important information to perform the flaw evaluation and to improve the weld procedure of NGW.

Wavelet Analysis of Elastic Wave for Wall Thinned High-Pressure Service Pipes (감육을 가지는 고압배관에 대한 탄성파의 Wavelet해석)

  • Kim, Jin-Wook;Ahn, Seok-Hwan;Lee, Si-Yoon;Nam, Ki-Woo;Do, Jae-Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.3 s.28
    • /
    • pp.1-8
    • /
    • 2005
  • We studied on the nondestructive evaluation of the elastic wave signals of locally wall thinned straight pipe. Wavelet transform was applied for the time-frequency analysis of waveforms obtained by fracture wave detector due to the dropping steel ball. The time-frequency analysis provides time variation of each frequency component involved in a waveform, which makes it possible to evaluate the shape of local wall thinning at each frequency. In this study, comparison by wavelet transform of the AE signals and monotonic bending tests without internal pressure are conducted on 1.91 inch diameter full-scale carbon steel pipe specimens. As the results of tests, fracture behaviors could be shown by the characteristic of mechanical strength of locally wall thinned pipes and the waveforms could be evaluated for the integrity insurance of the piping system according to the length and depth range of the deffeted shape pipes in the real field.

  • PDF

Acoustic Emission Characteristic with Local Wall Thinning under Static and Cyclic Bending Load (정적 및 반복굽힘하중을 받는 감육된 탄소강배관의 AE 특성 평가)

  • Ahn, Seok-Hwan;Kim, Jin-Hwan;Nam, Ki-Woo;Park, In-Duck;Kim, Yong-Un
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.134-139
    • /
    • 2002
  • Fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear power plant. However, effects of local wall thinning on strength and fracture behaviors of piping system were not well studied. Acoustic emission(AE) has been widely used in various fields because of its extreme sensitivity, dynamic detection ability and location of growing defects. In this study, we investigated failure modes of locally wall thinned pipes and AE signals by bending test. From test results, we could be divided four types of failure modes of ovalization, crack initiation after ovalization, local buckling and crack initiation after local buckling. And fracture behaviors such as elastic region, yielding range, plastic deformation range and crack progress could be evaluated by AE counts, accumulative counts and time-frequency analysis during bending test. It is expected to be basic data that can protect a risk according to local wall thinning of pipes, as a real time test of AE.

  • PDF

Development of Semi-automatic Gas Metal Arc Welding Equipment for Fire Piping and Evaluation of Characteristics of Weld Joints (소방배관용 강관을 위한 반자동 가스메탈아크용접장치 개발과 용접부 특성평가)

  • Lim, Young-Min;Oh, Tae-Suk;Jo, Hyun;Koh, Jin-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1460-1465
    • /
    • 2012
  • The semi-automatic gas metal arc welding equipment was developed and the weldability of zinc coated steel pipes was evaluated in terms of strength, porosity and welding parameters including shielding gas composition. The good bead appearance and the reduction of porosity in the welds could be possibly obtained by adding $O_2$ to Ar. The strength and joint efficiency of welds made by the semi-automatic welding equipment was about 1.8 times higher compared with welds manually made. The integrity of welds was confirmed by the water pressure test as well, Finally, it is expected that the weld productivity will be enhanced even unskilled welders can produce quality welds by operating the semi-automatic welding equipment.

Behavior of Elastic and Plastic Limit Loads of Thinned Elbows Observed During Real-Scale Failure Test Under Combined Load (감육엘보 실증실험에서의 탄성 및 소성 한계하중 거동 고찰)

  • Lee, Sung-Ho;Lee, Jeong-Keun;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1293-1298
    • /
    • 2010
  • In most power plants, wall thinning in carbon-steel pipes due to flow-accelerated corrosion is one of the major aging phenomena, and it reduces the load-carrying capacity of the piping system. Various types of wall-thinning defects were manufactured in real-scale elbows, and monotonic in-plane bending tests were performed under internal pressure to evaluate the failure behavior of the elbows. In this paper, the behavior of elastic and plastic limit leads of locally thinned elbows in a real-scale failure test is presented. The loads determined on the basis of TES (twice elastic slope) were considered to be the limit loads of locally thinned elbows so that the integrity of the thinned elbows could be maintained, even when a small amount of plastic deformation might have occurred.

Development of Seismic Analysis Model and Time History Analysis for KALIMER-600 (KALIMER-600 지진해석모델 개발 및 시간이력 지진응답해석)

  • Koo, Gyeong-Hoi;Lee, Jae-Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.3 s.55
    • /
    • pp.73-86
    • /
    • 2007
  • In this paper, a simple seismic analysis model of the KALIMER-600 sodium-cooled fast reactor selected to be the candidate of the GEN-IV reactor is developed. By using this model, the seismic time history analysis is carried out to investigate the feasibilities of a seismic isolation design. The developed simple seismic analysis model includes the reactor building, reactor system,, IHTS piping system, steam generator, and seismic isolators. The dynamic characteristics of the simple seismic model are verified with the detailed 3-dimensional finite element analysis for each part of the KALIMER-600 system. By using the developed simple seismic model, the seismic time history analyses for both cases of a seismic isolation and non-isolation design are performed for the artificial time history of a SSE (Safe Shutdown Earthquake) 0.3g. From the comparison of the calculated floor response spectrum, it is verified that the seismically isolated KALIMER-600 reactor building shows a great performance of a seismic isolation and assures a seismic integrity.

Water-hammer in the Pump Pipeline System with and without an Air-Chamber (에어챔버 설치에 따른 펌프관로계의 수격현상)

  • Lee, Sun-Kon;Yang, Cheol-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • When the pumps stopped in the operation by the power failure, the hydraulic transients take place in the sudden change of a velocity of pipe line. Each and every water hammer problem shows the critical stage to be greatly affected the facts of safety and reliability in case of power failure. The field tests of the water hammer executed at Cheong-Yang booster pump station having an air chamber. The effects were studied by both the practical experiments and the CFD(Computational Fluid Dynamics : Surge 2008). The result states that the system with water hammering protection equipment was much safer when power failure happens. The following data by a computational fluid dynamic analysis are to be shown below, securing the system stability and integrity. (1) With water hammering protection equipment. (1) Change of pressure : Up to $15.5\;kg/cm^2$ in contrary to estimating $16.88\;kg/cm^2$. (2) Change rate of water level : 52~33% in contrary to estimating 55~27%. (3) Note that the operational pressure of pump runs approx. 145 m, lowering 155 m of the regularity head of pump. (4) Note that the cycle of water hammering delays from 80 second to 100 second, together with easing the function of air value at the pneumatic lines. (2) Change of pressure without water hammering protection equipment : Approximate $22.86\;kg/cm^2$. The comprehensive result says that the computational fluid dynamics analysis would match well with the practical field-test. It was able to predict Max. or Min. water hammering time in a piping system. This study aims effectively to alleviate water hammering in a pipe line to be installed with air chamber at the pumping station and results in making the stability of pump system in the end.

CONCEPTUAL DESIGN OF THE SODIUM-COOLED FAST REACTOR KALIMER-600

  • Hahn, Do-Hee;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Lee, Yong-Bum;Kim, Byung-Ho;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.193-206
    • /
    • 2007
  • The Korea Atomic Energy Research Institute has developed an advanced fast reactor concept, KALIMER-600, which satisfies the Generation IV reactor design goals of sustainability, economics, safety, and proliferation resistance. The concept enables an efficient utilization of uranium resources and a reduction of the radioactive waste. The core design has been developed with a strong emphasis on proliferation resistance by adopting a single enrichment fuel without blanket assemblies. In addition, a passive residual heat removal system, shortened intermediate heat-transport system piping and seismic isolation have been realized in the reactor system design as enhancements to its safety and economics. The inherent safety characteristics of the KALIMER-600 design have been confirmed by a safety analysis of its bounding events. Research on important thermal-hydraulic phenomena and sensing technologies were performed to support the design study. The integrity of the reactor head against creep fatigue was confirmed using a CFD method, and a model for density-wave instability in a helical-coiled steam generator was developed. Gas entrainment on an agitating pool surface was investigated and an experimental correlation on a critical entrainment condition was obtained. An experimental study on sodium-water reactions was also performed to validate the developed SELPSTA code, which predicts the data accurately. An acoustic leak detection method utilizing a neural network and signal processing units were developed and applied successfully for the detection of a signal up to a noise level of -20 dB. Waveguide sensor visualization technology is being developed to inspect the reactor internals and fuel subassemblies. These research and developmental efforts contribute significantly to enhance the safety, economics, and efficiency of the KALIMER-600 design concept.

Prediction of stress intensity factor range for API 5L grade X65 steel by using GPR and MPMR

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Saravanan, M.;Gandhi, P.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.565-574
    • /
    • 2022
  • The infrastructures such as offshore, bridges, power plant, oil and gas piping and aircraft operate in a harsh environment during their service life. Structural integrity of engineering components used in these industries is paramount for the reliability and economics of operation. Two regression models based on the concept of Gaussian process regression (GPR) and Minimax probability machine regression (MPMR) were developed to predict stress intensity factor range (𝚫K). Both GPR and MPMR are in the frame work of probability distribution. Models were developed by using the fatigue crack growth data in MATLAB by appropriately modifying the tools. Fatigue crack growth experiments were carried out on Eccentrically-loaded Single Edge notch Tension (ESE(T)) specimens made of API 5L X65 Grade steel in inert and corrosive environments (2.0% and 3.5% NaCl). The experiments were carried out under constant amplitude cyclic loading with a stress ratio of 0.1 and 5.0 Hz frequency (inert environment), 0.5 Hz frequency (corrosive environment). Crack growth rate (da/dN) and stress intensity factor range (𝚫K) values were evaluated at incremental values of loading cycle and crack length. About 70 to 75% of the data has been used for training and the remaining for validation of the models. It is observed that the predicted SIF range is in good agreement with the corresponding experimental observations. Further, the performance of the models was assessed with several statistical parameters, namely, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Efficiency (E), Root Mean Square Error to Observation's Standard Deviation Ratio (RSR), Normalized Mean Bias Error (NMBE), Performance Index (ρ) and Variance Account Factor (VAF).

A Study on the Development of the Repair Standards for Underground Pipelines Carrying Natural Gas (도시가스 매설배관 보수기준 개발에 관한 연구)

  • Ryou, Young-Don;Lee, Jin-Han;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.33-43
    • /
    • 2016
  • Grinding, weld deposition, type A sleeve, type B sleeve, composite sleeve, hot tapping and clamp are used as the method to repair the buried pipelines in the United States, UK and Europe. In the event of defect to the pipeline, they have repaired the pipeline through the fitness-for-service assessments. In addition, they have guidelines for the possible repair methods to apply to each type of damage, which is occurred due to the 3rd party construction or corrosion. According to the KGS FS551, Safety Validation in Detail including ECDA(External Corrosion Direct Assessment) as one method of integrity management should be carried out for the old pipeline which supply natural gas as the middle pressure in Korea. Where a defect on the pipelines is found, on the result of Safety Validation in Detail, the pipelines should be repaired or replaced by new piping. However, there are no guidelines or regulations regarding the repair and reinforcement of pipeline, so that, cutting the damaged pipeline and replacing it as a segment of new pipe is the only way in Korea until now. We have suggested pipeline repair methods including type A, B sleeve, composite sleeve, after the survey of foreign repair method and standards including the method of United States and the United Kingdom, and after analysis of the results on pipeline repair test including type A, type B sleeve and composite sleeve.