• Title/Summary/Keyword: pipecolic acid

Search Result 11, Processing Time 0.029 seconds

Optical Resolution of DL-Pipecolic Acid by Fermentation Using Pseudomonas sp. PA09

  • Kim, Chan-Soo;Lee, Il-Seok;Chung, Nam-Hyun;Bang, Won-Gi
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.217-221
    • /
    • 2001
  • Pseudomonas sp. PA09 was isolated from farm soil and used for the optical resolution of D-pipecolic acid from DL-popecolic acid. The strain PA09 consumed L-pipecolic acid preferentially as the sole carbon and energy source, thus accumulating D-pipecolic acid in the culture broth. Optimization to improve the enantiomeric excess and yield was performed. The time course experiment showed that the strain OP09 consumed L-pipecolic acid almost to completion after 35h of cultivation, and the enantiomeric excess and the yield (% of residual D-pipecolic acid) were 99.8 and 96.0%, respectively.

  • PDF

Regulation of Salicylic Acid and N-Hydroxy-Pipecolic Acid in Systemic Acquired Resistance

  • Gah-Hyun, Lim
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.21-27
    • /
    • 2023
  • In plants, salicylic acid (SA) is a central immune signal that is involved in both local and systemic acquired resistance (SAR). In addition to SA, several other chemical signals are also involved in SAR and these include N-hydroxy-pipecolic acid (NHP), a newly discovered plant metabolite that plays a crucial role in SAR. Recent discoveries have led to a better understanding of the biosynthesis of SA and NHP and their signaling during plant defense responses. Here, I review the recent progress in role of SA and NHP in SAR. In addition, I discuss how these signals cooperate with other SAR-inducing chemicals to regulate SAR.

Structural Basis for Recognition of L-lysine, L-ornithine, and L-2,4-diamino Butyric Acid by Lysine Cyclodeaminase

  • Min, Kyungjin;Yoon, Hye-Jin;Matsuura, Atsushi;Kim, Yong Hwan;Lee, Hyung Ho
    • Molecules and Cells
    • /
    • v.41 no.4
    • /
    • pp.331-341
    • /
    • 2018
  • L-pipecolic acid is a non-protein amino acid commonly found in plants, animals, and microorganisms. It is a well-known precursor to numerous microbial secondary metabolites and pharmaceuticals, including anticancer agents, immunosuppressants, and several antibiotics. Lysine cyclodeaminase (LCD) catalyzes ${\beta}$-deamination of L-lysine into L-pipecolic acid using ${\beta}$-nicotinamide adenine dinucleotide as a cofactor. Expression of a human homolog of LCD, ${\mu}$-crystallin, is elevated in prostate cancer patients. To understand the structural features and catalytic mechanisms of LCD, we determined the crystal structures of Streptomyces pristinaespiralis LCD (SpLCD) in (i) a binary complex with $NAD^+$, (ii) a ternary complex with $NAD^+$ and L-pipecolic acid, (iii) a ternary complex with $NAD^+$ and L-proline, and (iv) a ternary complex with $NAD^+$ and L-2,4-diamino butyric acid. The overall structure of SpLCD was similar to that of ornithine cyclodeaminase from Pseudomonas putida. In addition, SpLCD recognized L-lysine, L-ornithine, and L-2,4-diamino butyric acid despite differences in the active site, including differences in hydrogen bonding by Asp236, which corresponds with Asp228 from Pseudomonas putida ornithine cyclodeaminase. The substrate binding pocket of SpLCD allowed substrates smaller than lysine to bind, thus enabling binding to ornithine and L-2,4-diamino butyric acid. Our structural and biochemical data facilitate a detailed understanding of substrate and product recognition, thus providing evidence for a reaction mechanism for SpLCD. The proposed mechanism is unusual in that $NAD^+$ is initially converted into NADH and then reverted back into $NAD^+$ at a late stage of the reaction.

Algicidal Activity of a Dibenzofuran-Degrader Rhodococcus sp.

  • Wang, Meng-Hui;Peng, Peng;Liu, Yu-Mei;Jia, Rui-Bao;Li, Li
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.260-266
    • /
    • 2013
  • Rhodococcus sp. strain p52, a previously isolated dibenzofuran degrader, could effectively inhibit the growth of cyanobacteria, including species of Microcystis, Anabaena, and Nodularia. When strain p52 was inoculated at the concentration of $7.7{\times}10^7$ CFU/ml, 93.5% of exponentially growing Microcystis aeruginosa ($7.3{\times}10^6$ cells/ml initially) was inhibited after 4 day. The threshold concentration for its algicidal activity against M. aeruginosa was $7.7{\times}10^6$ CFU/ml. Strain p52 exerted algicidal effect by synthesizing extracellular substances, which were identified as trans-3-indoleacrylic acid, DL-pipecolic acid, and L-pyroglutamic acid. The effective concentrations of trans-3-indoleacrylic acid and DL-pipecolic acid against M. aeruginosa were tested to be 0.5 mg/l and 5 mg/l, respectively.

Central Functions of Amino Acids for the Stress Response in Chicks

  • Yamane, H.;Kurauchi, I.;Denbow, D.M.;Furuse, Mitsuhiro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.296-304
    • /
    • 2009
  • The nutritional significance of essential amino acids, as well as non-essential amino acids, is well documented in poultry production with regards to growth performance and protein accretion. However, the function of amino acids in the stress response is still unclear. L-Pipecolic acid, a L-lysine metabolite in the brain, induced a hypnotic and sedative effect acting via the ${\gamma}$- aminobutyric acid receptors. L-Arginine also induced a sedative effect via its metabolism to L-ornithine. In addition, three-carbon nonessential amino acids like L-alanine, L-serine and L-cysteine also induced sedative effects. These facts suggest that the requirement for amino acids in both essential and non-essential types may require reconsideration to add the concept of stress amelioration in the future.

Neonatal Adrenoleukodystrophy Presenting with Neonatal Seizure (경련을 동반한 신생아 부신백질이영양증)

  • Shin, Young-Lim;Yoo, Han-Wook
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.2 no.1
    • /
    • pp.15-19
    • /
    • 2002
  • Disorders resulting from defects in peroxisomal biogenesis include Zellweger syndrome, neonatal adrenoleukodystrophy, and infantile Refsum disease. The three diseases are now considered as a continuum of clinical features. Neonatal adrenoleukodystrophy is intermediate between Zellweger syndrome and infantile Refsum disease in severity, and is characterized by profound hypotonia, intractable seizures and premature death. We report a cases of neonatal adrenoleukodystrophy presenting with neonatal seizure and hypotonia. At the age of 43 months, she had clinical evidence of adrenal insufficiency with skin hyperpigmentation and electrolyte imbalance. She was diagnosed having neonatal adrenoleukodystrophy based on abnormally high levels of plasma very long-chain fatty acids, pipecolic acid and phytanic acid.

  • PDF

Studies on the Physiological Chemistry of Spring Habits in Naked Barley III. Variation of Free Amino acids during the Differentiation and Development of Young Spkie with Different Spring Habits (과맥의 파성에 대한 생리화학적 연구 III. 파성심도에 따른 유수분화 및 발육과정에 있어서의 유이아미노산의 소장)

  • 최선영
    • Journal of Plant Biology
    • /
    • v.20 no.3
    • /
    • pp.127-134
    • /
    • 1977
  • In order to investigate the changes of free amino acids during the differentiation and development of young spike in naked barley, a typical spring grain, Wanju, and two winter grains, Sedohadaka and Nonsankwa No. 1-6 differing in their spring habits, were analyzed at different growth stages by thin layer chromatography. In all the varieties 22 ninhydrin positive components were detected at the sowing time of March 5 and 20 components in the sowing plots of March 30. In case of the latter plot, β-alanine was identified only in both Wanju and Sedohadaka, whereas pipecolic acid was detected only in Nonsankwa No. 1-6. Particularly, it is interesting that β-alanine was observed only in the case showing the normal heading independent of the varieties and sowing times. Whether these components are directly related to the physiology of spring habits in barley or not is also a question to be answered. Of the major amino acids, alanine and γ-aminobutyric acid were always detected in appreciably large spots, and serine, leucine, aspartic acid, valine and asparagine were somewhat larger. In the plot of march 30, glutamic acid was also detected in very large spot in both Wanju and Sedohadaka at the stage of spikelet differentiation and in Nonsankwa No. 1-6 at the stage of bract differentiation. Histidine, which showed the only qualitative difference among the varieties during seed germination, cannot be observed at all. Proline observed considerably large spot during seed germination was always detected but very small except that it was observed in large spot at the stage of floret differentiation in Nonsankwa No. 1-6 in the plot of March 5.

  • PDF

Systemic Acquired Resistance in Plants (전신획득저항성에 의한 식물병 방어기작)

  • Dawon, Jeon;Taekyung, Kim;Gah-Hyun, Lim
    • Journal of Life Science
    • /
    • v.32 no.11
    • /
    • pp.908-917
    • /
    • 2022
  • Systemic acquired resistance (SAR) is a form of systemic immunity that prevents secondary infections of distal uninfected parts of plants by related or unrelated pathogens. SAR is mediated by several SAR-inducing chemicals or mobile signals that accumulate after pathogen infection. Several chemicals that move systemically have already been identified as SAR-inducing factors, despite the fact that the early mobile signal remains unclear. These chemicals can be transported into either the apoplastic or symplastic compartments. Many of the chemicals associated with SAR remain unknown in terms of their transport routes. There is recent evidence that azelaic acid (AzA) and glycerol-3-phosphate (G3P) are transported via plasmodesmata (PD) channels, which regulate the symplastic route. In contrast, salicylic acid (SA) is preferentially transported from pathogen-infected to uninfected parts via the apoplast. The pH gradient and SA deprotonation lead to apoplastic accumulation of SA before it accumulates in the cytosol. Moreover, there is evidence that the mobility of SA over a long distance is crucial for SAR and that the partitioning of SA into the symplast and cuticles is controlled by transpiration. Further research has shown that a portion of the total SA in leaves is partitioned into cuticular waxes. The purpose of this review is to discuss the role of SAR-inducing chemicals and the regulation of transport in SAR.