• Title/Summary/Keyword: pipe installation

Search Result 263, Processing Time 0.026 seconds

An Improved Pipe Hoop Stress Formula

  • Lee, Jaeyoung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.76-82
    • /
    • 2001
  • The ASME B3l.4〔1〕and B3l.8 〔2〕codes use the thin wall formula to predict hoop stress in a pipe. To account for the external pressure, the above codes simply subtract the external pressure from the internal pressure. The thin wall formula using this differential pressure does not give the same hoop stress as the thick wall formula. This paper proposes an improved equation to predict pipe hoop stress subjected to both internal and external pressure. Compared to the conventional thin wall formula, the improved formula has additional terms, which improve the agreement with the thick wall formula and account for external pressure. The improved formula is less conservative than the conventional thin wall formula, but slightly more conservative than the thick wall formula. The formula is simpler and easier to use than the thick wall formula and will save pipe material cost as well as installation cost compared to using the conventional thin wall formula. The savings will increase as the water depth increases.

  • PDF

Analysis of the Correlation between the Thickness of Support Pin of Pipe Support and the Compressive Load (파이프 서포트의 지지핀 두께와 압축하중의 상관관계 분석)

  • Choi, Myeong Ki;Park, Jongkeun
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.36-43
    • /
    • 2022
  • Generally, in construction sites, the pipe support installation workers often use support pins of 9~10 mm which are much smaller than the safety standard sizes for work convenience. Although the safety certification standard thickness of the support pins is 11 mm, and the supervisors are often indifferent to this. Hence, products with far lower performance than the pipe support safety certification value of 40,000 N, which is applied in the supporting post-structural review, are used. Accordingly, this acts as a factor causing collapse accidents in the process of pouring concrete at the construction site. Therefore, this study performed compression experiments on new and reused pipe supports to determine how the thickness of the support pins affects the structural compression performance of the pipe support by considering the thickness of the support pins as a critical variable among various factors affecting the pipe support performance. In the course of the study, the compression test of the pipe support (V2, V4) for the new products showed that only 14 (58.3%) of the total 24 samples satisfied the safety certification standard value of 40,000 N, which indicates that more thorough quality control is required in the manufacturing process. Additionally, comparing the thickness of the support pins and their fracture shape shows that the pipes with support length of 4.0 m or longer are much more affected by the buckling of the entire length than the thickness of the support pins. Of the several factors affecting the performance of reused pipe supports, it was found that, similar to the new products, the use of support pins, with thickness of 12 mm rather than 11 mm, can satisfy the safety certification value more appropriately. Therefore, regardless of the state of usage, it could be concluded that it is necessary to use 12 mm products, whose thickness is larger than that of the safety certification standard value of 11 mm, to improve the performance of the pipe supports.

A Study on the Streaming Electrifacation in Forced Oil Cooled Transformer (강제유 냉각 변압기의 유동계전에 관한 연구)

  • 권동진;강창구;곽희로;김재철
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.53-56
    • /
    • 1990
  • When oil flows and rubs against various materials in transformer, electrostatic charges are separated at the interface of the oil and the solid material. Using simplified model transformer, authors investigated the basic characteristics of the streaming electrifica-tion which is caused by forced oil circulation. As the result of the study, it was concluded that the electrostatic charge distribution on test pipe of the transformer showed larger leakage current at the inlet and the outlet.

  • PDF

Probabilistic Neural Network for Prediction of Leakage in Water Distribution Network (급배수관망 누수예측을 위한 확률신경망)

  • Ha, Sung-Ryong;Ryu, Youn-Hee;Park, Sang-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.799-811
    • /
    • 2006
  • As an alternative measure to replace reactive stance with proactive one, a risk based management scheme has been commonly applied to enhance public satisfaction on water service by providing a higher creditable solution to handle a rehabilitation problem of pipe having high potential risk of leaks. This study intended to examine the feasibility of a simulation model to predict a recurrence probability of pipe leaks. As a branch of the data mining technique, probabilistic neural network (PNN) algorithm was applied to infer the extent of leaking recurrence probability of water network. PNN model could classify the leaking level of each unit segment of the pipe network. Pipe material, diameter, C value, road width, pressure, installation age as input variable and 5 classes by pipe leaking probability as output variable were built in PNN model. The study results indicated that it is important to pay higher attention to the pipe segment with the leak record. By increase the hydraulic pipe pressure to meet the required water demand from each node, simulation results indicated that about 6.9% of total number of pipe would additionally be classified into higher class of recurrence risk than present as the reference year. Consequently, it was convinced that the application of PNN model incorporated with a data base management system of pipe network to manage municipal water distribution network could make a promise to enhance the management efficiency by providing the essential knowledge for decision making rehabilitation of network.

A Study on Pipe Spool considering Workspace based on Genetic Algorithm (유전 알고리즘 기반의 작업공간을 고려한 배관 스풀에 관한 연구)

  • Yu, Seong-Sang;Lee, Kyung-Ho;Lee, Jung-Min;Nam, Byeong-Wook;Kim, Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.77-83
    • /
    • 2016
  • Pipe working is consist of design, making and installation. Pipe line is consist of spool pipes which are made in fabrication shop. And these spool pipes installation in shipyard. Spool pipes are designed based 2D Drawings(ISO Drawing), so spool pipes are not considered working area, that wake decreasing working efficiency and delay working time. In this paper, suggest make spool pipe design method using analysis working area about 3D CAD model and genetic algorithm.

A Study on BWMS Installation for a Ship without CAD Data (설계 데이터가 손실된 선박에 대한 BWMS 설치 계획 연구)

  • Jeon, Songkwun;Choi, Young
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • After 2017 years, BWMS units must be installed in the existing ship as well as the new ship by the ballast water management convention. Software tools that can help automatically searching for BWMS installation space to avoid pipes and equipment in the engine room of the existing ship will be very useful in the BWMS layout design. In this study, voxel representation of scanned data is generated first to search space efficiently. Simplified voxel models of each unit are prepared to be located in the engine room space as well. Distance between connected models is calculated through the arrangement direction and position of each model. Sums of distance between connected models are compared for the optimal configuration. It is assumed that the sum of distance between connected models depicts the pipe usage. The proposed method can save the time needed for BWMS installation design and allows optimal configuration of BWMS units.

Numerical analysis results of the cathodic protection for the underground steel pipe by anode installation method

  • Jeong, Jin-A;Choo, Yeon-Gil;Jin, Chung-Kuk;Park, Kyeong-Wan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1212-1216
    • /
    • 2014
  • This study aims to find out the best anode location for buried pipelines. Numerical simulation program known as CATPRO (Elsyca, Belgium) were used for confirming the best location of anodes and the effects of impressed current cathodic protection system. Applied conditions for numerical simulation were similar to on-site environmental conditions for optimal application of cathodic protection system. Used criterion of cathodic protection was NACE SP 0169, which describes that minimum requirement for cathodic protection is -850mV vs. CSE. Various layouts for anodes' installation were applied, which were distance between anodes, anode installation location, and applied current. The areas where cathodic protection potential was lower than -850mV vs. CSE was limited up to 50m from anode installation locations. It was founded numerical analysis obtain cost-effective and efficient cathodic protection methods before design and application the impressed cathodic protection system to on-site environment.

A Study on Fusion Welding Strength of PE pipe (PE배관의 융착 강도에 관한 연구)

  • Jun, Hung-Won;Kim, Yong-Soo;Tae, Soon-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.16-21
    • /
    • 2002
  • At present the Polyethylene piping, on supporting LNG is widely used because of it's disposition which are anti-corrosion flexible and so on. However, it has a few kinds of risk which are the possibility of piping leak, the character of easily corroded and so on. For giving solution, this study is intended to experiment the intension of the PE pipe after melted and when it is melting, the condition which are temperature and pressure is changed. the melting condition in temperature and pressure is adapted identically. After melting, it's joint is tested as intension. The result is that the effect of temperature in intension is more effective than pressure. In $210^{\circ}C$, $20kg/cm^{2}$ condition, the melting intension has the highest. Compare to the Butt melting joint and the Saddle melting joint, the former was $214kg/cm^{2}$ and the latter was $50kg/cm^{2}(bead\;2{\sim}3mm)$ and $73kg/cm^{2}(bead\;5{\sim}7mm)$. It means that the Butt melting method has more intensive than saddle. Consequently, the result shows that the liability and safety when pipe melting method is used will improve in pipe installation.

Assessment of Soil Characteristics on External Corrosion of Water Pipes (토양특성이 상수도관의 외부부식에 미치는 영향 평가)

  • Bae, Chul-Ho;Kim, Ju-Hwan;Park, Sang-Young;Kim, Jeong-Hyun;Hong, Seong-Ho;Lee, Kyoung-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.737-745
    • /
    • 2006
  • The goal of this study is to present an external pit corrosion rate($p_{ecr}$) model with considering both the age of pipe and the soil characteristics. The correlation of nonlinear exponential model among conventional empirical models was a little higher than other empirical models in the prediction of $p_{ecr}$ according to the age of pipe. However, there has been a limit to predict Peer with the model by using only a pipe age since installation as a variable. The soil analysis results from sixty nine samples showed that all of the samples were non corrosive in the assessment of ANSI/AWWA scoring system. The correlation of soil corrosion factors and $p_{ecr}$ was also low. The application result of linear and nonlinear regression models that soil characteristics only showed a low correlation with $p_{ecr}$ Proposed nonlinear regression model in this study, with considering both the age of pipe and the soil characteristics, showed a little higher correlation ($R^2=0.46$) than conventional model.

Improvement of the Vibration Characteristics for the Oil Pipe Support Structure of the Crude Oil Carrier (설계개선에 의한 원유운반선 송유관 지지구조물의 진동 저감)

  • Kim Heui-Won;Park Jin-Hwa
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.69-75
    • /
    • 2005
  • Recently it was reported that the vibration problems on the oil pipe support structure of the crude oil carrier were occurred. in order to investigate the vibration characteristics and the causes of the vibration occasionally. the vibration measurements and impact tests for the oil Pipe structure were carried out. From the measurement results severe vibration was caused by the resonance between the transversal natural frequency of the structure and $6^{th}$ order excitation force of the main engine. Providing the proper countermeasures a series of the vibration analyses were carried out based on the measurement results. From the analysis results, it was concluded that the vibration characteristics of the oil pipe structure were affected by the oil pipes, support structure itself, upper deck structure and the installation spaces and the standard design was established for the crude oil carriers.

  • PDF