• Title/Summary/Keyword: pipe cooling

Search Result 413, Processing Time 0.028 seconds

Analysis on the performance and internal flow of a tubular type hydro turbine for vessel cooling system

  • Chen, Zhenmu;Kim, Joo-Cheong;Im, Myeong-Hwan;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1244-1250
    • /
    • 2014
  • The temperature of the main engine cabin of commercial vessel is very high. The material SS-316L undergoes creep damage at temperatures exceeding $450^{\circ}C$. It is essential to maintain the highly stressed engine cabin below the creep regime. Hence, seawater is employed in this kind of maritime vehicles as cooling liquid. It obtains the thermal energy at the cooling pipe line after passing through main engine cooling system. To harness the energy in the seawater, a turbine can be installed to absorb the energy in the seawater before being released into the sea. In this study, a cooling pipe line is selected to apply the tubular type hydro turbine for transferring the energy. Numerical analysis for investigating the performance and the internal flow characteristics of the tubular turbine is conducted. The results show that the maximum efficiency of 85.8% is achieved although the efficiency drops rapidly at partial flow rate condition. The efficiency descends slowly at the condition of excess flow rate. There is a relatively wide operating range of flow rate of this turbine to keep high efficiency at the excess flow rate condition. For the internal flow of the turbine, there is uniform streamline on the suction and pressure sides of the blade at the design point. However, the secondary flow appears at the suction and pressure sidesat the excess flow rate.In addition, it appears only at pressure side at the partial flow rate condition.

Study on the Design and the Prototype Manufacture of Cooling systems of the Propulsion System for the EMU (동력분산형 고속전철의 추진시스템용 냉각장치 설계 및 시제품 제작 연구)

  • Ryoo, Seong-Ryoul;Kim, Sung-Dae;Ki, Jae-Hyung;Yim, Kwang-Bin;Kim, Chul-Ju
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.422-429
    • /
    • 2008
  • The objective of the present study is to develope a propultion unit cooling system for the next-generation High-speed EMU. The propulsion power control unit consists of some IGBT semiconductors. In general, those power semiconductors are very sensitive to temperatures and need a cooling system to keep them at a proper operational conditions in the range of $50{\sim}100^{\circ}C$. In this first year of study, we tried to focuss on the understanding of fundamental technologies for each of the two different cooling systems and collecting basic data for design and manufacturing for both cases. For the water cooling system, a heat sink with multi channels of liquid flow was considered and a model unit was designed and performance test was conducted. For the heat pipe cooling system, a Loop Heat Pipe(LHP) was considered as an element to transport heat from IGBT to environment air flow and a model unit was designed and performance test was conducted. The analysis using SINDA/FLUINT showed that those design parameters are good enough for the LHP to properly operate under a heat load up to around 360W.

  • PDF

Numerical study on the transient operation characteristics of the heat pipe cooling system with the multiple uniform heating components for broadband digital cross-connect system (다수의 균일발열부품이 접촉된 광대역 회선분배 시스템 냉각용 히트파이프 시스템의 비정상 동작특성에 관한 수치적 연구)

  • No, Hong-Gu;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.734-749
    • /
    • 1998
  • A numerical study t predict the characteristics on transient operation of the heat pipe cooling system with multiple heaters for electronic system has been performed. The heat pipe cooling system of 45 cm length and 16 mm diameter was composed of evaporator section with four heaters which simulate electronic components, insulated transport section, and condenser section with a conductor which was cooled under the constant heat flux boundary condition. Two test cases were investigated in present study; Case 1 indicated that the 1st and 2nd heaters among four heaters were heated off, while the 3rd and the 4th heaters were heated on. Case 2 was the inverse situation switched from heating locations of Case 1. Case 3 indicated that the 1st and 4th heaters among four heaters were heated off, while the 2nd and 3rd heaters were heated on. The results showed that the transient time to reach the steady state is shorter for Case 1 than for Case 2. Especially, the maximum temperature among the heaters which simulate electronic components during switching operation is relatively small compared to the maximum allowable operating temperature in electronic system. It is concluded that the heat pipe cooling system in present study operate with the good thermal reliability even for sudden switching situation of the heaters.

Design and Fabrication of a Micro-Heat Pipe with High-Aspect-Ratio Microchannels (고세장비 미세채널 기반의 마이크로 히트파이프 설계 및 제조)

  • Oh, Kwang-Hwan;Lee, Min-Kyu;Jeong, Sung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.164-173
    • /
    • 2006
  • The cooling capacity of a micro-heat pipe is mainly governed by the magnitude of capillary pressure induced in the wick structure. For microchannel wicks, a higher capillary pressure is achievable for narrower and deeper channels. In this study, a metallic micro-heat pipe adopting high-aspect-ratio microchannel wicks is fabricated. Micromachining of high-aspect-ratio microchannels is done using the laser-induced wet etching technique in which a focused laser beam irradiates the workpiece placed in a liquid etchant along a desired channel pattern. Because of the direct writing characteristic of the laser-induced wet etching method, no mask is necessary and the fabrication procedure is relatively simple. Deep microchannels of an aspect ratio close to 10 can be readily fabricated with little heat damage of the workpiece. The laser-induced wet etching process for the fabrication of high-aspect-ratio microchannels in 0.5mm thick stainless steel foil is presented in detail. The shape and size variations of microchannels with respect to the process variables, such as laser power, scanning speed, number of scans, and etchant concentration are closely examined. Also, the fabrication of a flat micro-heat pipe based on the high-aspect-ratio microchannels is demonstrated.

An Experimental Investigation on the Operating Characteristics of a Reversible Loop Heat Pipe (가역 루프 히트파이프의 작동특성에 관한 실험적 연구)

  • Kim Bong-Hun;Choi Joon-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.3
    • /
    • pp.231-239
    • /
    • 2006
  • An experimental investigation of a Reversible Loop Heat Pipe (RLHP) was conducted to determine the operating limits and performance characteristics as functions of the thermophysical parameters, the heat input, and the cooling intensity. Variations in both temperature and heat transport capacity were measured and analyzed in order to accurately evaluate the transient operating characteristics. In addition, the maximum heat transport as a function of the mean evaporator temperature, the ratio of heat transport to heater input power as a function of the mean evaporator temperature, and the overall thermal resistance as a function of the overall heat transport capacity were examined as well. Results indicated that the cooling intensity played an important role on the operating characteristics and performance limitation. The maximum heat transports corresponding to cooling intensity $72W/^{\circ}C$ and $290W/^{\circ}C$ were 446 W and 924 W, respectively. Also, observation of the startup characteristics indicated that the mean evaporator temperature should be maintained between $40^{\circ}C$ and $60^{\circ}C$, and overall thermal resistance were measured as $0.02^{\circ}C/W$.

Cooling Technique for Electronic Equipments using a small scale CPL heat pipe (소형 CPL 히트파이프를 이용한 전자장치 냉각 기술)

  • Kang, Sarng-Woo;Lee, Yoon-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1241-1246
    • /
    • 2004
  • The heat flux on a chip is rapidly increasing with decreasing the size of one. It is necessary to properly cool the high heat flux chip. One of the promising cooling methods is to apply CPL heat pipes with porous materials, for example PVA, polyethylene, and powder sintered metal plate and with microchannels in the evaporator. A small scale CPL heat pipe with PVA as wick was designed and manufactured. Since the height difference between the evaporator and the condenser is a crucial parameter in the CPL heat pipes, the performance of the heat pipes depending on the parameter was investigated. The parameter is higher the performance is better. However, the improvement rate of the performance does not increase the increase rate of the height. In addition to, the parameter effect depending on heat input was investigated.

  • PDF

Heat Transfer Characteristics of the U-shape Heat Pipe using Working Fluid of PFC (PFC 작동유체 사용 U형 히트파이프의 열전달특성 연구)

  • 이기우;박기호;전원표
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.796-802
    • /
    • 2001
  • The purpose of the present study is to examine the heat transfer characteristics of the U-shape heat pipe for the cooling of semiconductor in subway train. Perflouro-carbon(PFC) was used as working fluid. Temperature distribution on the surface and heat transfer coefficients were investigated according to the working fluid volume percent and heating rate. The results were as follows; Optimum volumetric percent of working fluid was from 80% to 90%, and hat transfer coefficients of evaporation and condensation were as follows, respectively. $\hbar_ie=0.37\times(\frac{P_i}{P_O})$l_c}^0.3$,$\hbar_ic-4.2(\frac{\kappa_l^3p_l^2gh_fg}{\mu_lq_c_l_c}^\frac{1}{3}

  • PDF

A STUDY ON HEAT TRANSFER THROUGH THE FIN-WICK STRUCTURE MOUNTED IN THE EVAPORATOR FOR A PLATE LOOP HEAT PIPE SYSTEM

  • Nguyen, Xuan Hung;Sung, Byung-Ho;Choi, Jee-Hoon;Yoo, Jung-Hyung;Seo, Min-Whan;Kim, Chul-Ju
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2137-2143
    • /
    • 2008
  • This paper investigates the plate loop heat pipe system with an evaporator mounted with fin-wick structure to dissipate effectively the heat generated by the electronic components. The heat transfer formulation is modeled and predicted through thermal resistance analysis of the fin-wick structure in the evaporator. The experimental approach measures the thermal resistances and the operating characteristics. These results gathered in this investigation have been used to the objective of the information to improve the LHP system design so as to apply as the future cooling devices of the electronic components.

  • PDF

A Study on the GSHP System for Domestic application(I) (GSHP 시스템의 국내적용성에 관한 연구(I))

  • 백성권;안형준;박영진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.439-444
    • /
    • 2002
  • Geothermal or ground source heat pumps(GSHPs) are electrically powered systems that take advantage of the earth's relatively constant temperature to provide heating, cooling, and hot water for homes and commercial buildings. The buried pipe, or ground loop, is the most recent technical advance in heat pump technology. The idea to bury pipe in the ground to gather heat energy began in the 1940s. Only recently, however, have new heat pump designs and improved buried pipe materials been combined to make GHP systems the most efficient heating and cooling systems available. The aim of the study is application of the GSHP system in korea. Our environments for economy, politics and society are different from other countries. For a case, the progressive tax rate of home electricity is represented.

  • PDF

A Study on Design of Multi-Winding Transformer for Poly Silicon Production using Heat Pipe (히트파이프를 이용한 폴리실리콘 제조용 다중권선 변압기 설계에 관한 연구)

  • Lee, Chun-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1626-1630
    • /
    • 2015
  • This paper reflected the Temperature test value and compare the Computational Fluid Dynamic analysis value on particular characteristics of the multi-winding transformer's cooling apparatus equipped by heat pipe with excellent heat transfer ability on design Particularly if you look at multi-winding transformers that supply high-quality Direct current power to silicon production apparatus, heat generation due to high current supply is excessive thus, an innovative cooling apparatus is required in particular for reduced size transformer.