• Title/Summary/Keyword: pipe cooling

Search Result 413, Processing Time 0.024 seconds

Thermal-hydraulic analysis of a new conceptual heat pipe cooled small nuclear reactor system

  • Wang, Chenglong;Sun, Hao;Tang, Simiao;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • Small nuclear reactor features higher power capacity, longer operation life than conventional power sources. It could be an ideal alternative of existing power source applied for special equipment for terrestrial or underwater missions. In this paper, a 25kWe heat pipe cooled reactor power source applied for multiple use is preliminary designed. Based on the design, a thermal-hydraulic analysis code for heat pipe cooled reactor is developed to analyze steady and transient performance of the designed nuclear reactor. For reactor design, UN fuel with 65% enrichment and potassium heat pipes are adopted in the reactor core. Tungsten and LiH are adopted as radiation shield on both sides of the reactor core. The reactor is controlled by 6 control drums with B4C neutron absorbers. Thermoelectric generator (TEG) converts fission heat into electricity. Cooling water removes waste heat out of the reactor. The thermal-hydraulic characteristics of heat pipes are simulated using thermal resistance network method. Thermal parameters of steady and transient conditions, such as the temperature distribution of every key components are obtained. Then the postulated reactor accidents for heat pipe cooled reactor, including power variation, single heat pipe failure and cooling channel blockage, are analyzed and evaluated. Results show that all the designed parameters satisfy the safety requirements. This work could provide reference to the design and application of the heat pipe cooled nuclear power source.

Configuration and Analysis of a Feed-forward Control System for Jacket Cooling Water Temperature of Marine Prime Diesel Engine (주기관 쟈케트냉각수 온도를 위한 피드포워드 제어시스템의 구성과 분석)

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1303-1308
    • /
    • 2008
  • Keeping cooling water temperature higher within the allowable range helps marine engines to run in more efficient condition especially when the engine load is low. Temperature control of jacket cooling water in outlet side of main engine has been more widely adopted to ships these days for the purpose to reduce fuel consumption rate. But If the temperature sensor for the control loop is placed at the outlet of engine, it brings more difficulties in attaining stable and desirable properties due to dead times included in pipe length and engine itself comparing to the case where the measuring point is at the inlet side of main engine. In relation with this problem, Feed-forward control could be one of realistic solutions as it reveals good properties and requires less cost for system configuration. This study suggests a forward control system which leads to improved temperature control performances to disturbance signals which could arise from variation of engine load or weather condition. Two dead times in the modelling were described, considering pipe length between the actuator and the engine as well as the thermal process inside the engine. The results of analysis were shown by simulations to confirm responses under different conditions.

A Study on the Mechanical Property and Microstructure of SA213 P92 Boiler Pipe Steel (보일러 배관용 P92 파이프강의 기계적 특성 및 미세조직에 관한 연구)

  • Kim, Beom Soo;Son, Tae Ha;Min, Taek Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.11
    • /
    • pp.777-783
    • /
    • 2012
  • The hardness and strength test was performed to make the manufacturing process of SA213 P92 boiler pipe steel. And the microstructure change was studied to find out the cause of room temperature property of P92 steel, ie, low hardness and strength property. The room temperature property of P92 steel depends on the improper normalizing and cooling rate. Especially, Ferrite was formed and the steel had low hardness when the temperature was decreased slowly under the cooling rate $1^{\circ}C$/min after normalizing at the temperature around $A_{c1}$ to $A_{c3}$. The critical heat treatment temperature and cooling rate was over $900^{\circ}C$ and over $10^{\circ}C$/min to satisfy the minimum yield and tensile stress which was laid down by ASME Code.

A Study on Cooling Characteristics of Miniature Heat Pipes with Woven-Wired Wick (편조형 윅을 갖는 소형 히트파이프의 냉각특성에 관한 연구)

  • 문석환;김광수;최춘기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.227-234
    • /
    • 2000
  • An experimental study was performed for understanding the limiting power and heat transfer characteristics of an MHP having the diameter of 3 or 4 mm which could be applied to cooling of miniature electronic equipment such as the notebook PC CPU etc. The experimental parameters which are inclination, structure of the wick, the length of the condenser and the total heat pipe were considered. The MHP with a woven-wired wick has the advantages of the improvement in capillary limit, the effective attachment tightly toward wall and the convenience in construction of wick. Cooling performance of the present MHP was compared with that of MHP with grooved, fine fiber and sintered type wick which were applied by existing enterprises. With respect to the inclination of$ -5^{\circ}$ , an MHP having the diameter of 3 or 4 mm shows the limiting power of 6~14 W. Therefore, it is expected that the MHP of the present study has sufficient applicability of cooling of notebook PC of which the amount of heat generated is about 12 W.

  • PDF

Study on Operating Characteristics of a Water Cooling System for cooling Power Conversion Semiconductors (전력변환반도체 냉각용 수냉각장치의 작동특성에 관한 연구)

  • Ryoo, Seong-Ryoul;Kim, Sung-Dae;Yim, Kwang-Bin;Kim, Chul-Ju
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.249-256
    • /
    • 2009
  • The cooling technology of power conversion semiconductors in the propulsion system for the HEMU(High Electrical Multi Unit) are applied in water cooling method and phase change method such as the immersed type and the heat pipe type. This research designs and manufactures the water cooling system that could cool about heat load Q=2kW and performance tests to apply it by an electric power conversion semiconductors(IGBT) cooling technology. Experimental condition made change of a flow rate, an air velocity and a heat load to confirm operation characteristics of water cooling device, and when is heat load 2kW, air velocity 20 m/s, and water flow rate 7kg/s, it is about $80^{\circ}C$ to temperature of cooling plate.

  • PDF

A Study on the Thermal Performance of a Z-shaped Heat Pipe (Z자 형상을 갖는 히트파이프에 대한 열성능 연구)

  • Park, S.Y.;Boo, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.741-745
    • /
    • 2001
  • The necessity of a Z-shape heat pipe may occur in a special application such as a cooling module for an electronic equipment having a limited accessible space. Either of the two end part works as evaporator or condenser and the length of the middle part is 200mm. The heat pipe was made of 3/8 inch copper tube having 60 spiral groove with screw angle of 10 degrees. Water and acetone were used as working fluids. The fill charge ratio of the working fluid was varied for different values of thermal loads. The thermal resistance was calculated based on the temperature measurements along the heat pipe axis. The maximum thermal loads were 80W for water and 100W for acetone heat pipe. The optimum fill charge ratio was identified through a series of experiments.

  • PDF

Innovative Transient Thermal Gradient Control to Prevent Early Aged Cracking of Massive Concrete (매스콘크리트의 열경사 조절에 의한 수화열과 온도균열의 방지)

  • Kim, Seong-Soo;Cho, Tae-Jun;Lee, Jeong-Bae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.164-172
    • /
    • 2008
  • The heat of hydration for early aged mass concrete induces high temperature with the hydration. Control of the temperature difference across a section is an effective strategy to minimize the hydration heat induced cracks for the structures where internal restraint is dominant. The current prevention methods for hydration cracking show some limitations for the control of thermal gradients, and these limitations could make micro and macro cracks in surface and core of concrete. Especially cooling methods can decrease the increasing hydration temperature, but it can not prevent the problem while decreasing temperature. Consequently heating pipes are added simultaneously with the cooling pipes in order to control the temperature gradients between core and surface of the concrete, followed by the finite element analysis (FEA). Based on the FEA, the proposed method using cooling pipe and heating pipes together has been found to be an effective alternative in thermal gradient control, in terms of controlling temperature induced cracks significantly.

Study on Validity of Pre-cooling System for Hydrogen Gas Using Cryocooler Part II: CFD Simulation (극저온 냉동기를 활용한 기체 수소 예냉 시스템 검증에 관한 연구 Part II: CFD 시뮬레이션)

  • YOUNG MIN SEO;HYUN WOO NOH;DONG WOO HA;TAE HYUNG KOO;ROCK KIL KO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.439-446
    • /
    • 2023
  • In this study, the computational fluid dynamics (CFD) simulations were conducted to verify the cooling capacity of the cryocooler used for pre-cooling of hydrogen gas. Based on the experimental results, the effect of the flow rate on a copper pipe attached to the bottom of the cryocooler was investigated. In this study, the temperature data was calculated through the change of boundary condition for heat flux in the copper pipe. In addition, the cooling capacity of the cryocooler for pre-cooling hydrogen gas was considered by calculating the cooling temperature according to the flow rate in the certified operating range. Consequently the pre-cooing system for hydrogen gas was validated with a reasonable accuracy through CFD simulations.

Plant-scale experiments of an air inflow accident under sub-atmospheric pressure by pipe break in an open-pool type research reactor

  • Donkoan Hwang;Nakjun Choi;WooHyun Jung;Taeil Kim;Yohan Lee;HangJin Jo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1604-1615
    • /
    • 2023
  • In an open-pool type research reactor with a downward forced flow in the core, pipes can be under sub-atmospheric pressure because of the large pressure drop at the reactor core in the atmospheric pool. Sub-atmospheric pressure can result in air inflow into the pipe from the pressure difference between the atmosphere and the inside of the pipe, which in a postulated pipe break scenario can lead to the breakdown of the cooling pump. In this study, a plant-scale experiment was conducted to study air inflow in large piping systems by considering the actual operational conditions of an advanced research reactor. The air inflow rate was measured, and the entrained air was visualized to investigate the behavior of air inflow and flow regime depending on the pipe break size. In addition, the developed drift-flux model for a large vertical pipe with a diameter of 600 mm was compared with other correlations. The flow regime transition in a large vertical pipe under downward flow was also studied using the newly developed drift-flux model. Consequently, the characteristics of two-phase flow in a large vertical pipe were found to differ from those in small vertical pipes where liquid recirculation was not dominant.

Effective Dynamic Models of a Cooling System for the Main Transformer in a Tilting Train (틸팅열차 주변압기 냉각시스템의 동적모델)

  • Han, Do-Young;Noh, Hee-Jeon;Won, Jae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.22-29
    • /
    • 2008
  • In order to improve the efficiency of a main transformer in a tilting train, the optimal operation of a cooling system is necessary. For the development of optimal control algorithms of a cooling system, mathematical models of a main transformer cooling system were developed. These include dynamic models of a main transformer, an oil pump, an oil cooler, a blower, and a pipe. Control algorithms for a blower and an oil pump were selected in order to identify the effectiveness of dynamic models. A simulation program was developed by using the developed dynamic models and the selected control algorithms. Simulation results showed good predictions of dynamic behaviors of a main transformer cooling system. Therefore, dynamic models, which were developed in this study, may be effectively used to develop control algorithms of a main transformer cooling system.

  • PDF