• Title/Summary/Keyword: pipe cleaning

Search Result 58, Processing Time 0.033 seconds

Development of Pipe Cleaning Robot for the Industry Pipe Facility (산업배관의 이물질 청소를 위한 배관청소로봇의 개발)

  • Lee, Jae-Youl;Hong, Sung-Ho;Jeong, Myeong-Su;Suh, Jin-Ho;Chung, Goo-Bong;Han, Kyoung-Ryoung;Choi, Il-Seob
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.65-77
    • /
    • 2017
  • In this paper, we introduce the pipe cleaning robot developed to clean the gas impurities of the iron manufacturing equipments. The pipe cleaning robot is composed of two driving modules and one cleaning module. 2-DOF joint units were developed for connections among the modules. To maximize the traction power of the driving parts, it became caterpillar type. The extension links have been developed to maintain the traction force in case the pipe inner diameters change. Three cleaning modules were developed for the effective cleaning in the pipe. The driving and cleaning performance tests of the pipe cleaning robot were proceeded in the field of the iron manufacturing equipments.

Optimal Mechanism Design of In-pipe Cleaning Robot (관로 청소 로봇의 최적 설계)

  • Jung, C.D.;Chung, W.J.;Ahn, J.S.;Shin, G.S.;Kwon, S.J.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.123-129
    • /
    • 2012
  • Recently, interests on cleaning robots workable in pipes (termed as in-pipe cleaning robot) are increasing because Garbage Automatic Collection Facilities (i.e, GACF) are widely being installed in Seoul metropolitan area of Korea. So far research on in-pipe robot has been focused on inspection rather than cleaning. In GACF, when garbage is moving, the impurities which are stuck to the inner face of the pipe are removed (diameter: 300 mm or 400 mm). Thus, in this paper, by using TRIZ (Inventive Theory of Problem Solving in Russian abbreviation), an in-pipe cleaning robot of GACF with the 6-link sliding mechanism will be proposed, which can be adjusted to fit into the inner face of pipe using pneumatic pressure(not spring). The proposed in-pipe cleaning robot for GACF can have forward/backward movement itself as well as rotation of brush in cleaning. The robot body should have the limited size suitable for the smaller pipe with diameter of 300 mm. In addition, for the pipe with diameter of 400 mm, the links of robot should stretch to fit into the diameter of the pipe by using the sliding mechanism. Based on the conceptual design using TRIZ, we will set up the initial design of the robot in collaboration with a field engineer of Robot Valley, Inc. in Korea. For the optimal design of in-pipe cleaning robot, the maximum impulsive force of collision between the robot and the inner face of pipe is simulated by using RecurDyn(R) when the link of sliding mechanism is stretched to fit into the 400 mm diameter of the pipe. The stresses exerted on the 6 links of sliding mechanism by the maximum impulsive force will be simulated by using ANSYS$^{(R)}$ Workbench based on the Design Of Experiment(in short DOE). Finally the optimal dimensions including thicknesses of 4 links will be decided in order to have the best safety factor as 2 in this paper as well as having the minimum mass of 4 links. It will be verified that the optimal design of 4 links has the best safety factor close to 2 as well as having the minimum mass of 4 links, compared with the initial design performed by the expert of Robot Valley, Inc. In addition, the prototype of in-pipe cleaning robot will be stated with further research.

Development of a Monitoring System for a Pipe Cleaning Robot with RS-485 (RS-485 통신을 이용한 배관청소 로봇의 모니터링 시스템 개발)

  • Kim, Min-wook;Lee, Hun-seok;Oh, Jin-seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.923-930
    • /
    • 2016
  • Various pipes are used in the many industrial field such as water supply, drainage system and marine plants, so a maintenance of these pipes is essential. Especially, the maintenance of the piping in the industrial field, some professional staffs enter and clean the pipe. If the professional staffs can not enter and clean the pipe, the workers has to use the method of inserting a scraper connected to wire inside the pipe. However, this method demands huge budget and causes a number of problems such as traffic congestion. To solve these problems, pipe cleaning robot has been researching and developing. Many Pipe cleaning robots have a problem, that is impossible to confirm the operating condition of the robot in a real time. This paper suggest pipe cleaning robot with RS-485 which transmit operating and cleaning condition of robot and inner pipe filmed by camera, that user can check.

Water-jet Cleaning Motion of the In-Pipe Robot with Screw Drive Inside the Water Pipes

  • Kang, Hoon;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.894-901
    • /
    • 2012
  • For more efficient use of the high pressure water-jet in rehabilitation of the water pipes, we have studied the water-jet cleaning motion of the in-pipe robot with screw drive. The mathematical models of the water-jet in the straight and the curved pipe (90 degrees elbow), representative features of the water mains, were designed to understand the water-jet motion and simulations have been performed. Furthermore the experiments has been conducted to validate the simulations by using the prototype in-pipe robot in the 3-D pipeline. The simulation results show that the water-jet motion in the straight pipe has a constant water-jet interval, whereas the motion in the curved pipe is changed by its position. By the comparison of the simulation and the experimental results, we have demonstrated that the simulations successfully estimate the water-jet motion inside the water pipes. Therefore in-pipe robot operators can predict a water-jet motion for a target water pipe through the simulation and flexibly make a proper water-jet motion by changing the robot configurations before a cleaning work.

Field Applications of Carbon Dioxide Pellet for Underground Pipe Cleaning (지중 매설관의 세정을 위한 카본 다이옥사이드 펠릿의 현장 적용성 검토)

  • Choi, Jae-Soon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.75-82
    • /
    • 2017
  • In this study, a new cleaning method using carbon dioxide pellet in the part of underground pipe cleaning method was proposed and verified. First of all, the commentary of The Society for Protective Coatings was examined in detail to determine the quantitative cleaning effects. Also, field tests were carried out to confirm the application of the new method. In the test, the surface condition of inner pipe after the application of the new method was investigated and two types of nozzles were compared in the tests. Also, the tests to measure the final impact pressure of air and carbon dioxide pellet mixtures were performed to investigate the losses of air pressure were investigated. Through this verification on the new method, it was found that the new method is very efficient for the removal of the rust in the pipe cleaning works. Also, the nozzle with excellent cleaning effect was also selected. As a result, this method will be able to largely contribute to the recycling of $CO_2$ which is limited to the use as a cooling agent or the storage of waste.

Development of Chemical Cleaning Agents for Cleaning Indoor Water Supply Pipes (옥내급수관 세척용 화학세정제 개발 연구)

  • Lee, Jae-Hoon;Jung, Jae-Yong;Park, Yong-Bae;Bae, Jae-Heum;Woo, Dal-Sik;Sin, Hyun-Duk
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.162-171
    • /
    • 2010
  • The objective of this study is to develop cleaning agents for the indoor water supply pipe which is environmentally friendly and suitable for removing scale by using various organic acids, inorganic acids, and some additives. Among various organic acids, oxalic acid, citric acid, and malic acid showed good cleaning efficiency of iron oxides which were main components of the indoor water supply pipe scale. Several cleaning agents were formulated by adding chemical additives into these organic acids and evaluated for removal of iron oxides. In this study, it was found that nonionic surfactants were excellent for the removal of iron oxide scale among various additives. Two types of cleaning agents($F_1$, $F_2$) with comparatively high solvent power for iron oxides were formulated in this study. The cleaning agents $F_1$ made by organic acids and some additives were formulated to be safe and environmentally friendly, but seemed to have disadvantage due to their comparatively low cleaning efficiency of iron oxide than $F_2$. But, the cleaning agents $F_2$ prepared by adding inorganic acid a little to $F_1$ showed comparatively good cleaning efficiency of iron oxide and could be recommended for removing hard scale of iron oxides in the indoor water supply pipe. Thus, it is considered that the formulated cleaning agents should be selected based on the extent of scale in the indoor water supply pipe.

A Study on Ultrasonic Sould-fields for Cleaning in a Pipe (관 내 세정을 위한 초음파 음장 연구)

  • Lee, Jung-Gu;Kim, Jin-Oh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.564-570
    • /
    • 2005
  • This paper presents some results of research for applying ultrasonic cleaning to an interior wall of cylindrical pipe. As the cleaning is achieved better for higher sound pressure, ultrasonic sound field in a cylindrical container is considered. The paper identifies nonuniform sound field established by the radiation of a cylindrical transducer driven at resonant frequency, Numerical analysis predicts the sound pressure distribution, and experiment verifies the trend of analysis results. Experiment observes the cleaning effect, and this paper suggests the possibility of using a cylindrical ultrasonic cleaning device.

Development of a Rotation Swab Pig Method for Cleaning Water Pipes (상수관의 세척을 위한 회전식 스왑피그 공법 개발)

  • Kicheol Lee;Jaeho Kim;Kisung Kim;Jeongjun Park
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.63-75
    • /
    • 2024
  • Drinking water is an essential element to ensure the basic human right to live, and the quality of clean water must always be ensured. However, domestic water facilities, which were installed intensively in the early 2000s, are deteriorating. The accidents such as discoloration of water such as chromaticity and turbidity as well as leakage of substances frequently occur. However, since it is virtually impossible to replace all water pipes, the detailed standards for maintenance of water pipe network facilities established in 2021 require water pipe cleaning. The swab pig method, one of the water pipe cleaning methods, is a method of physically removing substances in pipes and is evaluated as having the highest cleaning efficiency. However, Swab is highly likely to be damaged or deformed during the cleaning process, and may even be lost. Therefore, in this study, the material of the pig was changed to a material with high compressibility, and it was made as close as possible to the inner wall of the water pipe. And, to maximize cleaning efficiency, a rotation swab pig with a rotation blade was developed. In addition, high-strength wire and winding equipment were additionally developed to eliminate the possibility of loss and to determine the location of the pig. The inlet and outlet are connected with wires, and after verifying the performance of each detailed technology, the technology was applied on a test bed with a 30m section. As a result of the application, the performance of the technology was verified by measuring the process time and evaluating applicability.