• 제목/요약/키워드: pinning force

검색결과 51건 처리시간 0.023초

와상전류를 응용하여 지진 충격흡수 장치를 위한 초전도 자기부상 안정화 향상 (Improving Superconductor Levitation for Seismic Isolation Device by Applying Eddy Current Effect)

  • 장형관;송준후;아시프 마흐무드;김세빈;양찬호;성태현
    • Progress in Superconductivity
    • /
    • 제12권2호
    • /
    • pp.93-98
    • /
    • 2011
  • Pinning force is the mechanism between a superconductor and a permanent magnet and it provides a stable levitation. However, when external force greater than the pinning force such as the earthquake exerts, the levitated object may lose the levitating characteristic. In order to achieve more stabilized levitation, the copper plate was inserted in between a superconductor and permanent magnets. And by applying the eddy current effect caused from the relationship between a copper plate and permanent magnets, more stabilized levitation can be established. In this study, an optimized design was found based on various configurations of permanent magnet's polarity, thickness and area of copper plate, and the gap distance between copper plate and permanent magnet. As results, higher eddy current value was obtained at where the change of polarity exists in permanent magnet configuration, and the highest eddy current value was observed at the copper plate thickness of 5 mm and the area of 80 mm ${\times}$ 80 mm. From the resulted optimized conditions above, which are 7 mm gap distance between a superconductor and permanent magnets and 80 mm ${\times}$ 80 mm ${\times}$ 5 mm dimension of a copper plate, the stiffness value was 65 % increased comparing to without any copper plate insertion.

초전도 벌크의 자기적 특성을 위한 간편한 시스템 (Magnetic Force Properties of Superconducting Bulk)

  • 이상헌
    • 한국전기전자재료학회논문지
    • /
    • 제36권1호
    • /
    • pp.70-73
    • /
    • 2023
  • To improve superconductor properties, the size of the crystal grains of the superconductor should be adjusted, the amount of electricity flowing through the superconductor should be increased, and the superconductor should be designed to withstand external magnetic fields. It is necessary to control the microstructure so that many flux pinning centers are developed inside the superconductor so that defects are generated physically or chemically, and the micro secondary phase for trapped magnetic flux must be dispersed inside the superconductor. In order to measure the superconducting magnetic force of the superconducting bulk in a simplified manner, the superconducting magnetic force was analyzed using an Nd-Fe-B permanent magnet of 3.80 kG. In particular, by delaying the growth of partially melted Y2BaCuO5 particles, we devised a plan to refine Y2BaCuO5 particles to effectively improve superconducting magnetic force, and analyzed superconducting magnetic force in a single crystal YBa2Cu3O7-y superconducting bulk using a gauss meter. The melted superconducting bulk traps 80% or more of the applied magnetic field, and can be used as a bulk magnet of high magnetic field magnetization applicable to electric power equipment.

초전도 자기부상 시스템 (Magnetic Levitation System of High Tc Superconductor)

  • 이상헌
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권4호
    • /
    • pp.213-216
    • /
    • 2006
  • The magnetic levitation effect a high Tc superconductor beneath the toroidal permanent magnet was examined by means of a improved magnetic seesaw method. Magnetic effects associated with penetration and pinning in superconductor. One of these was focussing of magnetic field by superconductor and the other was magnetic levitation. The existence of equilibrium was shown to be related to hysteresis observed in the force separation for a toroidal permanent magnet and superconductor. Obtained results indicate that magnetic levitation effect in the present case was mainly due to diamagnetic effect.

Electrical Properties of a High Tc Superconductor for Renewed Electric Power Energy

  • Lee Sang-Heon
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권3호
    • /
    • pp.371-375
    • /
    • 2006
  • Effects of $Ag_2O$ doping on the electromagnetic properties in the BiSrCaCuO superconductor. The electromagnetic properties of doped and undoped $Ag_2O$ in the BiSrCaCuO superconductor were evaluated to investigate the contribution of the pinning centers. It was confirmed experimentally that a larger amount of magnetic flux was trapped in the $Ag_2O$ doped sample than in the undoped one, indicating that the pinning centers of magnetic flux are related closely to the occurrence of the magnetic effect. We have fabricated superconductor ceramics by the chemical process. A high Tc superconductor with a nominal composition of $Bi_2Sr_2Ca_2Cu_3O_y$ was prepared by the organic metal salts method. Experimental results suggest that the intermediate phase formed before the formation of the superconductor phase may be the most important factor. The relation between electromagnetic properties of Bi HTS and the external applied magnetic field was studied. The electrical resistance of the superconductor was increased by the application of the external magnetic field. But the increase in the electrical resistance continues even after the removal of the magnetic field. The reason is as follows; the magnetic flux due to the external magnetic field penetrates through the superconductor and the penetrated magnetic flux is trapped after the removal of the magnetic flux. During the sintering, doped $Ag_2O$ was converted to Ag particles that were finely dispersed in superconductor samples. It is considered that the area where normal conduction takes place increases by adding $Ag_2O$ and the magnetic flux penetrating through the sample increases. The results suggested that $Ag_2O$ acts to amplify pinning centers of magnetic flux, contributing to the occurrence of the electromagnetic properties.

$MgB_2$ 초전도 박막의 경이온 조사에 의한 효과 (Effects of Light-ion Irradiation on Superconducting $MgB_2$ thin Films)

  • 이남훈;성원경;;김소연;박성하;강원남
    • Progress in Superconductivity
    • /
    • 제11권1호
    • /
    • pp.8-12
    • /
    • 2009
  • We investigated the effects of the irradiation of light-ions on the superconducting $MgB_2$ thin films fabricated by using HPCVD. Deuterium and helium ions were irradiated on $MgB_2$ thin films by various doses, from $1{\times}10^{10}cm^{-2}\;to\;8{\times}10^{15}cm^{-2}$. During these experiments some reasonable results and unpredictable results have been obtained. The reasonable results are that the peak of the reduced maximum pinning force shifts by increasing the pinning sites in $MgB_2$ films and the slightly change of critical current density of films. We obtained some unusual results, which are the increasing of the transition temperature and the change of residual resistance ratio. Among the data of deuterium and helium ion irradiation experiments, the results of helium ion irradiation have most notable points so we will discuss mainly about helium irradiation experiments.

  • PDF

요철 형상의 스테인레스강 Z-핀으로 보강된 복합재 접합 구조물의 피로강도 (Fatigue Strength of Composite Joint Structures Reinforced by Jagged Shaped Stainless Steel Z-pins)

  • 최익현;임철호
    • 한국항공우주학회지
    • /
    • 제41권12호
    • /
    • pp.967-974
    • /
    • 2013
  • 저자는 최근 산업체 생산 현장에서 Z-피닝 복합재 구조물을 간편하게 제작할 수 있는 Z-피닝 패치 개념을 제안하였고, 이를 적용하여 복합재 단일-겹침 전단 접합시편을 제작하였으며, 정적시험을 통하여 54~68%의 접합강도의 향상을 발표하였다. 본 연구는 상기 연구의 후속으로서, 반복하중에 대한 접합강도의 향상을 측정하기 위하여 피로시험을 수행하였다. 사용된 Z-핀은 스테인레스강 핀이며, 복합재료와의 결합력을 증가시키기 위하여 표면을 요철 형상으로 가공하였으며, 화학적으로 부식시켰다. 반복하중 조건에서 접합강도는 약 98~125% 향상되었다.

MOD-TFA공정에 의한 YBCO박막 제조 시 cerium첨가효과에 관한 연구 (Effect of Cerium Doping on Superconducting Properties of YBCO Film Prepared by TFA-MOD Method)

  • 이금영;권연경;김병주;이희균;홍계원;유재무
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 광주전남지부
    • /
    • pp.33-34
    • /
    • 2006
  • The effects of Ba and Ce addition has been investigated in YBCO prepared by trifluoroacetate (TFA) metalorganic depostition (MOD) method. Precursor solutions with cation ratios of Y:Ba:Cu:Ce = 1:2+x:3:x (x = 0, 0.05, 0.1 and 1.5) have been prepared by adding an excess amount of cerium and barium. Coated film was calcined at lower temperature and conversion heat treatment at temperature of $780{\sim}810^{\circ}C$. It has been shown that the critical current (Ic) of YBCO film was degraded by doping of Ba and Ce atoms. But Ic was increased as the amount of doped Ba and Ce content increased from 5 % to 15 %. It was observed that there was little increase of a flux pinning force with Ba and Ce addition in YBCO film prepared by TFA-MOD process.

  • PDF

rf-sputtering법에 의한 MgO 나노점의 형성 연구 (MgO nanodot formation using the rf-sputtering method)

  • 정국채;유재무;김영국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권1호
    • /
    • pp.5-8
    • /
    • 2009
  • MgO nanodots have been deposited and formed on top of the substrate surface. Mg was sputtered to form the MgO nanodots on the single crystal substrates by rf-sputtering method and followed by heat treatment in the oxygen ambient. The deposition and formation of MgO nanodots have been controlled systematically using the process variables such as substrate temperature, sputtering time, and rf-power. As the substrate temperature increased from the room temperature the density of MgO nanodots decreased. The optimal conditions of MgO nanodots formation using the rf-sputtering was investigated and the maximum density of more than $230/{\mu}m^2$ on single crystal substrates was obtained when the rf-power of 100 watts was applied for 30 seconds at room temperature. The typical size of MgO nanodots was identified to be <160 nm(diameter) and 4-30nm (height) by atomic force microscopy. The modulated surface morphology was examined through surface images and cross-section analysis and discussed for the artificial pinning sites in the superconducting films.

Mg-Al 및 Mg-Zn 고용체의 진동감쇠능 비교 (Comparison of Damping Capacities in Mg-Al and Mg-Zn Solid Solutions)

  • 전중환
    • 열처리공학회지
    • /
    • 제36권6호
    • /
    • pp.389-395
    • /
    • 2023
  • Damping capacities of Mg-2.5%Al and Mg-2.5%Zn (in atomic) solid solutions were comparatively investigated in order to clarify the influence of solutionized Al and Zn elements on the damping characteristics of Mg. In this study, solid solutions with similar grain size were obtained by solution treatment at 678 K for different times (24 h for Mg-2.5%Al and 36 h for Mg-2.5%Zn), followed by water quenching at RT. The Mg-2.5%Al and Mg-2.5%Zn solid solutions showed similar damping capacities in the strain-amplitude independent region of 1 × 10-6 ~ 1 × 10-5 and in the strain-amplitude dependent region below 6 × 10-4, over which the Mg-2.5%Zn solid solution possessed better damping capacity than the Mg-2.5%Al solid solution. The damping tendencies depending on strain-amplitude for the two solid solutions were analyzed and discussed in terms of similar length between weak pinning points (solutes) and different solute/dislocation interaction forces in Granato-Lücke model.