• 제목/요약/키워드: pinned connections

검색결과 36건 처리시간 0.024초

6층 비가새 철골구조물의 반강접 접합부에 관한 해석적 연구 (An Analytical Study on Semi-Rigid Connections of 6-Story Unbraced Steel Structures)

  • 김진형;강석봉
    • 한국강구조학회 논문집
    • /
    • 제11권4호통권41호
    • /
    • pp.425-433
    • /
    • 1999
  • 일반적으로 철골조의 구조해석과 설계시 접합부는 완전한 강절점과 활절점으로 가정되나 실제의 접합부는 반강접의 거동을 보인다. 본 논문에서 접합부의 연성도를 고려한 비선형 거동과 부재의 기하 비선형을 고려할 수 있는 구조해석 프로그램을 개발하였다. 6층 비가새 철골구조물에 대한 효율적인 반강접 접합부를 제안하였으며 반강접 접합부의 구조물 거동에 미치는 영향을 파악하였다.

  • PDF

반강접성을 고려한 강뼈대 구조물의 비선형 해석에 관한 연구 (A Study on the Non-linear Analysis of Steel Frame with Semi-rigid Connections)

  • 이종석;이상엽;김정훈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.111-118
    • /
    • 1997
  • Generally, H-section is used for columns and beams in the middle and low building steel structure, But it has a axis and a weak axis. Thus if H-section is used for columns, the structure needs reinforcement on the weak axis. Therefore recently, square hollow section(S.H.S) is used for columns because it is able to cover the vulnerability of H-section. Structural analysis is usually executed under the assumption that connections are either ideally pinned joint or fully joint. Actually all connections are semi-rigid which possess a rotational stiffness. Therefore it can be designed economically as using the property of connections which has a rotational stiffness. This paper presents a prediction model curve which is fitted with Kishi-Chen Power Model about the behavior of connection between H-beam and S.H.S column in the previous experimental paper. It also suggests the new analysis algorithm considering the non-linear of semi-rigid connection and the geometrical non-linear under the effect of axial force.

  • PDF

H형강보.각형강관기둥 접합부의 연성도를 고려한 골조의 거동에 관한 연구 (A Study on the Behavior of Frame with Connections between H-Beams and S . H . S Columns considering Joint Flexibility)

  • 강석봉;김이두;박순규;김재훈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.211-218
    • /
    • 1997
  • Analysis of structures are usually executed under the assumption that connections are either ideally pinned joint or fully rigid joint. But in general all structures is connected under the semi-rigid connections. Semi-rigid connect ions have demerits that is simplification work on connection's behavior, moment-rotation relationships of connect ions , apprehension of nonlinear analysis etc. On the other hand there is merits that is improvements of serviceability, economic efficiency, construction in predicting real behavior frames. This study is to make model of connect ions by based on experimental study and after analysis on frames considering characteristics of semi-rigid connections. semi-rigid connection's influence on the behavior of structures and fundamental data on application of structures that is connected between S H S column and H beam is exhibited.

  • PDF

Semi-rigidity of cap plate and extended end plate connections

  • Nassani, Dia Eddin;Chikho, Abdul Hakim;Akgonen, Aliriza llker
    • Steel and Composite Structures
    • /
    • 제23권5호
    • /
    • pp.493-499
    • /
    • 2017
  • The behaviour of steel frames is highly influenced by the beam-column connections. Traditionally, Steel frames were usually designed assuming that connections are ideally pinned or fully rigid. A semi-rigid connection, however, creates a balance between the two extreme approaches mentioned above. In this research, two full scales of Extended End Plate Connections (EEPCs) were tested. Mathematical and numerical models were used to analyse the connections, and close correlations were found between these models and the corresponding tested specimens, which confirmed the confidence in the experimental results. The experimental results obtained enrich the available test data about behaviour of EEPC. In addition, the purpose of studying EEPC experimentally is to compare the stiffness and moment-rotation curve of EEPCs with that of Cap Plate Connections (CPCs), which were tested in a previous work. CPCs have not been studied sufficiently in the literature. The results obtained show that the typical CPC reduces the connection stiffness and these results will make a valuable contribution to the available test data in the research area of CPC.

횡하중을 받는 반강접 철골 골조의 유연도에 관한 연구( II ) -골조 해석모형을 중심으로- (A Study on the Flexibility of Semi-Rigid Steel Frames under Lateral Loadings( II ))

  • 강철규;한영철;이갑조
    • 한국강구조학회 논문집
    • /
    • 제8권4호통권29호
    • /
    • pp.121-131
    • /
    • 1996
  • Semi-rigid frames are frames for whcih the connections joining the beam and column are neither fully rigid nor perfectly pinned. In reality, all steel frames are semi-rigid in nature as all connections exhibit a certain degree of flexibility under loads. For semi-rigid frmaed structures, it is tended to reduce more rigidity of the member for the nonlinear behavior of connections and the P-delta effects of framed structure. To predict the actual behavior of semi-rigid steel frames, a more realistic analysis methods which explicitly takes into account the effect of connection flexibility should be used. In this research, the effect of connection flexibility in the semi-rigid structure has been investigated. To predict the response of flexibility connected frames, the algorithm of semi-rigid steel frame is developed using connection model having nonlinear spring on end of beam.

  • PDF

Visual Basic을 이용한 강뼈대 구조물의 비선형 해석 (Nonlinear Analysis of Steel Frames Using Visual Basic)

  • 윤영조;김선희;이종석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.403-410
    • /
    • 1999
  • General1y, H-section is used for columns and beams in the middle and low steel building, But it has a strong and weak axis. Thus if H-section is used for columns, the structure needs reinforcement on the weak axis. Therefore recently, square holler section(S.H.S) is used for columns because it is able to coiler the vulnerability of H-section. Structural analysis is usually executed under the assumption that connections are either ideally pinned joint or fully rigid joint. Actually all connections are semi-rigid which possess a rotational stiffness. Therefore it can be designed economically as using the property of connections which has a rotational stiffness. This paper presents a prediction model curve which is fitted Kishi-Chen power Model about the behavior of connection between H-beam and S.H.S column. Non-linear analysis program was considered the non-linearity of semi-rigid connection and the geometrical non-linearity under the effect of axial force. It was programed by FORTRAN90 and Visual Basic.

  • PDF

Seismic performance of single pier skewed bridges with different pier-deck connections

  • Attarchiana, Nahid;Kalantari, Afshin;Moghadam, Abdolreza S.
    • Earthquakes and Structures
    • /
    • 제10권6호
    • /
    • pp.1467-1486
    • /
    • 2016
  • This research focuses on seismic performance of a class of single pier skewed bridges with three different pier-deck connections; skew angles vary from $0^{\circ}$ to $60^{\circ}$. A well-documented four span continuous deck bridge has been modeled and verified. Seat-type connections with fixed and sliding bearings plus monolithic pier-deck connections are studied. Shear keys are considered either fully operational or ineffective. Seismic performances of the bridges and the structural components are investigated conducting bidirectional nonlinear time history analysis in OpenSees. Several global and intermediate engineering demand parameters (EDP) have been studied. On the basis of results, the values of demand parameters of skewed bridges, such as displacement and rotation of the deck plus plastic deformation and torsional demand of the piers, increase as the skew angle increases. In order to eliminate the deck collapse probability, the threshold skew angle is considered as $30^{\circ}$ in seat-type bridges. For bridges with skew angles greater than $30^{\circ}$, monolithic pier-deck connections should be applied. The functionality of shear keys is critical in preventing large displacements in the bearings. Pinned piers experience considerable ductility demand at the bottom.

A Simplified Steel Beam-To-Column Connection Modelling Approach and Influence of Connection Ductility on Frame Behaviour in Fire

  • Shi, Ruoxi;Huang, Shan-Shan;Davison, Buick
    • 국제초고층학회논문집
    • /
    • 제7권4호
    • /
    • pp.343-362
    • /
    • 2018
  • A simplified spring connection modelling approach for steel flush endplate beam-to-column connections in fire has been developed to enable realistic behaviour of connections to be incorporated into full-scale frame analyses at elevated temperature. Due to its simplicity and reliability, the proposed approach permits full-scale high-temperature frame analysis to be conducted without high computational cost. The proposed simplified spring connection modelling approach has been used to investigate the influence of connection ductility (both axial and rotational) on frame behaviour in fire. 2D steel and 3D composite frames with a range of beam spans were modelled to aid the understanding of the differences in frame response in fire where the beam-to-column connections have different axial and rotational ductility assumptions. The modelling results highlight that adopting the conventional rigid or pinned connection assumptions does not permit the axial forces acting on the connections to be accurately predicted, since the axial ductility of the connection is completely neglected when the rotational ductility is either fully restrained or free. By accounting for realistic axial and rotational ductilities of beam-to-column connections, the frame response in fire can be predicted more accurately, which is advantageous in performance-based structural fire engineering design.

Practical and efficient approaches for semi-rigid design of composite frames

  • Gil, Beatriz;Bayo, Eduardo
    • Steel and Composite Structures
    • /
    • 제7권2호
    • /
    • pp.161-184
    • /
    • 2007
  • The use of composite semi-rigid connections is not fully exploited, in spite of its great number of advantages. Composite semi-rigid connections may lead to an optimal moment distribution that will render lighter structures. Furthermore, using the appropriate semi-rigid connection design, the stability of the frames against lateral loads may entirely rely on the joint stiffness, thus avoiding bracing systems and permitting more diaphanous designs. Although modern codes, such as the Eurocode 4 (EC4), propose thorough methods of analysis they do not provide enough insight and simplicity from the design point of view. The purpose of this paper is to introduce practical and efficient methods of analysis that will facilitate the work of a structural analyst starting from the global analysis of the composite frame and ending on the final connection design. A key aspect is the definition of the stiffness and strength of the connections that will lead to an optimal moment distribution in the composite beams. Two examples are presented in order to clarify the application of the proposed methods and to demonstrate the advantages of the semi-rigid composite design with respect to the alternative pinned and rigid ones. The final aim of the paper is to stimulate and encourage the designer on the use of composite semi-rigid structures.

콘크리트충전 각형강관기둥-보 핀접합부의 거동에 관한 실험적 연구 (Structural Behaviour of Beam-to-Concrete Filled Steel Tube Column Pin Connections)

  • 김철환;이은택;김성은
    • 한국강구조학회 논문집
    • /
    • 제12권4호통권47호
    • /
    • pp.437-443
    • /
    • 2000
  • 콘크리트 충전각형강관 기둥-보 핀접합부를 대상으로 접합부의 회전강성, 전단내력 등 역학적 특성을 규명하기 위하여 실험을 수행하였다. 실험변수는 강관기둥의 폭-두께비 및 강관 내부의 수평 다이어프램, 슬래브 설치 유무이다. 기둥의 폭-두께비가 큰 시험체가 폭-두께비가 작은 시험체에 비하여 접합부의 회전강성이 낮으며, 변형도 접합부에 집중되어 발생한다.

  • PDF