• Title/Summary/Keyword: pineal body

Search Result 14, Processing Time 0.018 seconds

Effects of Melatonin on the Meiotic Maturation of Mouse Oocytes in vitro (생쥐 난자의 체외 성숙에 미치는 Melatonin의 영향)

  • Ahn, Hee-Jin;Bae, In-Ha
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.3
    • /
    • pp.155-168
    • /
    • 2004
  • Objective: Melatonin, which is secreted by pineal gland play an important role in the regulation of ovarian function via seasonal rhythm and sleep in most mammals. It also has a role in the protection of cells by removing toxic oxygen free radicals brought about by metabolism. In the present study, effects of melatonin on the mouse oocyte maturation were examined using two different culture conditions provided with 5% or 21% oxygen concentration. Material and Method: Immature mouse oocytes were obtained from the ovarian follicles of $3{\sim}4$ weeks old ICR strain mice intraperitoneally injected with 5 I.U. PMSG 44 hour before. Under stereomicroscope, morphologically healthy oocytes with distinct germinal vesicle (GV) were liberated from the graafian follicles and collected using mouth-controlled micropipette. They were then cultured for 17 hour at $37^{circ}C$, 5% $CO_2$ and 21% $O_2$ (95% air) or 5% $CO_2$, 5% $O_2$ and 90% $N_2$. New modified Hank's balanced salt solution (New MHBS) was used as a culture medium throughout the experiments. Effects of melatonin were examined at a concentration of $0.0001{\mu}M$, $0.01{\mu}M$ or $1.0{\mu}M$. For the prevention of spontaneous maturation of immature oocytes during culture, dibutyryl cyclic AMP (dbcAMP) and/or hypoxanthine were included in the medium. Results: Under 21% oxygen condition, oocytes cultured in the presence of $0.01{\mu}M$ melatonin showed a significantly higher maturation rates, in terms of germinal vesicle breakdown (95.0% vs 89.0%) and polar body formation (88.1% vs 75.4%), compared to those cultured with $0.0001{\mu}M$ or $1.0{\mu}M$ melatonin. However, no difference was observed in oocytes cultured under 5% oxygen whether they were treated with melatonin or not. In the presence of $0.01{\mu}M$ melatonin, oocytes either cultured under 21% or 5% oxygen exhibited no difference in the polar body formation (85.6% vs 86.7%). However, in the absence of melatonin, oocytes cultured under 21% oxygen exhibited lower polar body formation (74.7%). When oocytes were cultured in the presence of dbcAMP alone or with varying concentrations of melatonin, those treated with both compounds always showed better maturation, i.e., germinal vesicle breakdown and polar body formation, compared to those cultured with dbcAMP alone. At the same concentration of melatonin, however, oocytes exposed to 21% oxygen showed poor maturation than those to 5% oxygen. Similar results were obtained from the experiments using hypoxanthine instead of dbcAMP. Conclusion: Based upon these results, it is suggested that melatonin could enhance the meiotic maturation of mouse oocytes under 21% oxygen concentration, and release oocytes from the meiotic arrest by dbcAMP or hypoxanthine regardless of the concentration of oxygen, probably via the removal of oxygen free radicals.

Effects of Controlled Photoperiod on Body Development in Growing Juvenile Rats

  • Lee, Seung-Hoon;Lee, Han-Ki;Shin, Jin-Hee;Hong, Yun-Kyung;Lee, Sang-Kil;Lee, Sang-Un;Suzuki, Takao;Kang, Tae-Young;Hong, Yong-Geun
    • Reproductive and Developmental Biology
    • /
    • v.34 no.2
    • /
    • pp.89-94
    • /
    • 2010
  • Melatonin is induced by light information through the retina and leads to growth factor activation. Thus, we investigated the effects of melatonin by controlling the photoperiod of growing young rats. Male Sprague-Dawley rats (n=6; 4 weeks old) were divided into two experimental groups: the L/D group (normal photoperiod; light/dark: 12/12 h; lights on at 9:00 a.m.) and the L/L group (light/light: 24 h). Rat body weight and food consumption were measured daily for 8 weeks. After 8 weeks, the rats were anesthetized with a mixture of ketamine (50 mg/kg) and xylazine (10 mg/kg) and sacrificed. Tissue was then collected for RNA isolation (from brain, heart, liver, kidney, adrenal gland, testis, tibia, hind limb muscles). Also, serum was isolated from blood using a centrifugal separation. The L/L group had significantly lower body weight than the L/D group from 4 to 6 weeks (p<0.05). The L/D group had increased tissue mass, compared with the L/L group, but the difference was not statistically significant. The L/D group had a significantly higher melatonin concentration than the L/L group between the hours of midnight and 2:00 a.m (p<0.01). These results indicate that photoperiod length may affect the secretion of melatonin from the pineal gland. Also, the reduction of nocturnal melatonin secretion may retard the development of growing young rats. In future studies, we plan to compare exogenous melatonin administration with endogenous melatonin concentration induced by photoperiod control. Moreover, we will confirm whether the effects seen in pathological animal models can be reversed by controlling the photoperiod.

The Protective Effect of Melatonin Administration against Adria-mycin-induced Cardiotoxicity in Rats

  • Han, Jin;Kim, Chung-Hee;Kim, Na-Ri;Park, Ju-Hee;Yang, Young-Churl;Kim, Eui-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.4
    • /
    • pp.333-342
    • /
    • 2001
  • Adriamycin is a commonly used chemotherapeutic agent for cancer, including acute leukemia, lymphoma, and a number of solid human tumors. However, recent studies have recognized severe cardiotoxicity after an acute dose, which are likely the result of generation of free radicals and lipid peroxidation. Therefore, the clinical uses of adriamycin have been limited. Melatonin, the pineal gland hormone known for its ability to modulate circardian rhythm, has recently been studied in its several functions, including cancer growth inhibition, stimulating the immune system, and acting as an antioxidant and radical scavenging effects. In the present study, we evaluated the effect of melatonin administration on adriamycin-induced cardiotoxicity in rat. Heart slices were prepared using a Stadie-Riggs microtome for the measurement of malondialdehyde (MDA) content used as an index of lipid peroxidation and lactate dehydrogenase (LDH) release as an indicator of lethal cell injury. Serious adriamycin-induced lethality was observed in rat by a single intraperitoneal injection in a dose-dependent manner. A single injection of adriamycin (25 mg/kg, i.p.) induced a lethality rate of 86%, with melatonin (10 mg/kg s.c. for 6 days) treatment reducing the adriamycin-induced lethality rate to 20%. The severe body weight loss caused by adriamycin was also significantly attenuated by melatonin treatment. Treatment of melatonin marked reduced adriamycin-induced the levels of MDA formation and LDH release. A cell damage indicated by the loss of myofibrils, swelling of the mitochondria as well as cytoplasmic vacuolization was seen in adriamycin-treated group. Melatonin attenuated the adriamycin-induced structural alterations. These data provide evidence that melatonin prevents adriamycin-induced cardiotoxicity and might serve as a combination with adriamycin to limit free radical-mediated cardiotoxicity.

  • PDF

Effect of Melatonin on the Maturation of Mouse Germinal Vesicle(GV)-Stage Oocytes and Apoptosis of Cumulus Cells In Vitro (멜라토닌이 생쥐 미성숙 난자의 체외성숙과 난구세포의 세포자연사에 미치는 영향)

  • Na, Kyoung-Ah;Kim, Eun-Sun;Eum, Jin-Hee;Kim, Jung-Ho;Yoon, Seong-Il;Lee, Dong-Ryul
    • Development and Reproduction
    • /
    • v.12 no.2
    • /
    • pp.125-132
    • /
    • 2008
  • Melatonin (N-acetyl-5-methoxytryptamine), a major hormone of pineal gland in vertebrates, is known to be associated with regulation of the dynamic physiological functions in general and has some functions on reproduction in the ovarian follicles in particular. And its antioxidant properties as a scavenger are also reported. The aim of this study was to investigate the effect of melatonin on the in vitro maturation of mouse germinal vesicle (GV)-stage oocytes. Oocyte maturation, apoptosis, and mRNA expression of melatonin receptor were analyzed in the cumulus cell-enclosed oocytes (CEOs) cultured with melatonin for 18 h. The CEOs were obtained from 3 wk-old ICR female mice cultured in media with 0, 0.1 nM, 10 nM, or 1,000 nM melatonin for 18 h. And then the extrusion of the first polar body was assessed to evaluate the maturation rate. The apoptosis and mRNA expression of melatonin receptor (Mtnr1-a and Mtnr1-b) in cumulus cells of each group were measured by TUNEL assay, ELISA, and real time RT-PCR after in vitro maturation(IVM). The addition of melatonin in the IVM medium significantly improved nuclear maturation of the mouse GV oocytes and the highest maturation rate were obtained from the group treated with 1,000 nM melatonin. Apoptosis was not detected in IVM oocytes, but detected in cumulus cells. And cumulus cells treated with 1,000 nM melatonin exhibited significantly lower apoptosis. In the group treated with 1,000 nM melatonin, the expression of melatonin receptor mRNA was decreased in CEOs. In conclusion, melatonin has a potentially important role for regulating oocyte maturation and reduces the apoptosis of cumulus cells in vitro.

  • PDF