• Title/Summary/Keyword: pine tree

Search Result 622, Processing Time 0.032 seconds

Effect of Tree Species, Inoculation Amount and Inoculation Methods on Mycelium Growth and Sclerotia Formatino of Poria cocos Wolf (樹種, 接種量 및 接種方法이 茯笭 菌絲生長과 結笭에 미치는 영향)

  • 이희덕
    • Korean Journal of Plant Resources
    • /
    • v.11 no.3
    • /
    • pp.296-300
    • /
    • 1998
  • When medicinal mushroom, Poria cocos, is cultured , inoculation method of spawn is cross slice inoculation of which the both sides of pine tree were peeled and spawn of P.cocos was inoculated. However, this method required lots of inoculation amount. This study was carried out to improve the culturing method of P. cocos. A good growth of P.cocos was observed in MCM(mushroom complete medium), showing proper mycelia growth and density. In inoculation amount, conventional method(cross slice inoculation) requires 20 bottles of spawn. In contrast, short log method required 8 bottles of spawn and drilling inoculation method 2~3 bottles, which could save by 60% and 85-90% respectively. In the selectrion of tree species, pine and larch had better condition for spawn culture and sclerotia formation condition.In terms of yield , pine was 33.7kg/3.3$m^2$. In the yield of pine, conventional method was 23.4kg/3.3$m^2$, drilling inoculation 29.4kg/3.3$m^2$, short log inoculation 31.7kg/3.3$m^2$, therefore drilling inoculation could increase by 25% and short log inoculation 35%, In addition, management cost was also saved.

  • PDF

A Study on the Deep Learning-based Tree Species Classification by using High-resolution Orthophoto Images (고해상도 정사영상을 이용한 딥러닝 기반의 산림수종 분류에 관한 연구)

  • JANG, Kwangmin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.3
    • /
    • pp.1-9
    • /
    • 2021
  • In this study, we evaluated the accuracy of deep learning-based tree species classification model trained by using high-resolution images. We selected five species classed, i.e., pine, birch, larch, korean pine, mongolian oak for classification. We created 5,000 datasets using high-resolution orthophoto and forest type map. CNN deep learning model is used to tree species classification. We divided training data, verification data, and test data by a 5:3:2 ratio of the datasets and used it for the learning and evaluation of the model. The overall accuracy of the model was 89%. The accuracy of each species were pine 95%, birch 89%, larch 80%, korean pine 86% and mongolian oak 98%.

Adaptation Test of Scotch Pine (Pinus sylvestris L.) in Korea -Thirty-six-year-old Growth Performance of Twenty-two Provenances- (구주소나무 적응성검정 시험 -22개 산지 36년생 결과-)

  • Ryu, Keun Ok;Han, Mu Seok;Kim, In Sik;Lee, Ju Hwan;Lee, Jae Cheon
    • Korean Journal of Plant Resources
    • /
    • v.26 no.1
    • /
    • pp.26-35
    • /
    • 2013
  • This study was conducted to select superior provenances of Scots pine (Pinus sylvestris L.) well adapted to Korean environment for timber production. In 1976, twenty-two provenances of Scots pine were introduced from Sweden and the seeds were sown in seed beds in March. After one year, the seedlings were transplanted to nursery beds. The resulting 1-1 seedlings of 22 provenances were planted at Whaseong in 1978. Randomized complete block design with 3 replications were used for test plantation. Each provenance was planted with 20-tree row plot in each block and at a spacing of $1.8{\times}1.8m$. The growth performance of each provenance was monitored up to 33-years after planting. There were significant differences among provenances in volume growth. F3001 provenance showed the best volume growth of 33-years after planting ($0.160m^3$), which was 2.2 times greater than that of the lowest provenance W2027 ($0.072m^3$). The ranking of provenances was stabilized after 14 years. Comparing to reference tree species, Japanese red pine (Pinus densiflora), all Scots pine provenances showed poor growth performance. In other words, volume growth of Japanese red pine at age 28 and 33 were 2.1 and 3.3 times greater than that of Scots pine, respectively. Moreover, survival rate of Scots pine was lower than that of Japanese red pine. Based on these results, it was suggested that Scots pine was not suitable to Korean environments. The cause of maladaptation of Scots pine and the implications of introduction breeding were discussed.

Relationships between Cellulose Decomposition and Soil Environmental Factors in Three Coniferous Plantations (3수종의 침엽수조림지내 셀룰로오스 분해와 토양 환경요인과의 관계)

  • Kim, Choon-Sig
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.1
    • /
    • pp.39-44
    • /
    • 2012
  • This study was carried out to determine the relationships between cellulose decomposition and soil environmental factors in larch (Larix leptolepis) and pine (red pine: Pinus densiflora; rigitaeda pine: P. rigida ${\times}$ P. taeda) species planted in the same year (1963). The variation of cellulose mass loss with soil temperature, soil pH, soil $CO_2$ efflux rates, and soil water content was measured monthly for 4 months (July, August, September and October 2006) from three coniferous plantations. Mean mass loss rates during the study period were generally more rapid in rigitaeda pine (6.5 $mg\;g^{-1}\;day^{-1}$) than in red pine (6.2 $mg\;g^{-1}\;day^{-1}$) or larch (6.1 $mg\;g^{-1}\;day^{-1}$) plantations, although the mass loss rates were not significantly different among three tree species (P > 0.05). Cellulose mass loss rates among three tree species were positively correlated with soil temperature (red pine: r = 0.77, P < 0.05; rigitaeda pine: r = 0.59, P < 0.05; larch: r = 0.48, P < 0.05) at the 20 cm soil depth, while the mass loss rates were negatively correlated with soil pH (red pine: r = -0.63, P < 0.05; rigitaeda pine: r = -0.47, P < 0.05; larch: r = -0.43, P < 0.05). There was a significant correlation between cellulose mass loss and soil $CO_2$ efflux rates except for regitaeda pine plantation, while no significant correlation (P > 0.05) between cellulose mass loss and soil water content in larch or rigitaeda pine. The results suggest that cellulose mass loss rates in soil layers depend on the different soil environmental factors caused by tree species.

A Study on the Combustion Characteristics of the Crown of Pine Trees in the Drying Season (건조기 소나무 수관부 부위별 연소특성에 관한 연구)

  • Hyuk Kwon;Jong Ho Lee
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.4
    • /
    • pp.39-46
    • /
    • 2023
  • Pine trees, which account for 23% of the forested area of the Republic of Korea, are highly vulnerable to fire in comparison to broad-leaved trees due to the presence of consistent water tube sections throughout the year and resin that is composed of approximately 20% oil. In addition, the pattern of forest fires is determined by weather, topographic conditions, and fluctuation in moisture content. Therefore, when fire breaks out in pine tree forests during the dry season (January to March), it is difficult to extinguish, and it quickly spreads. In this study, the combustion characteristics of pine needles, pine cones, and pine branches in the water tube sections of living pine trees were compared and analyzed in accordance with the moisture content as per the ISO 5660-1. The monthly moisture content was analyzed from January to March, and it was found to be the lowest in March, with 53.6% for pine needles, 51.9% for pine branches, and 10.9% for pine cones. In particular, pine cones were more vulnerable to fire as compared to pine needles and pine branches because their moisture content was more than five times lower than that of pine needles and branches. The ignition time, which affects the speed of flame propagation, was the most rapid in March, and the fastest ignition time was for pine cones, at 19 seconds, followed by 34 seconds for pine needles, and 256 seconds for pine branches. The pine branches were the last to be ignited due to the effect of density, according to the thickness and specific gravity of the specimen. The peak heat release rate, which is a measurable index of fire intensity, was analyzed for pine cones and found to be 184.28 kW/m2 , while the mean effective heat of combustion was 19.79 MJ/kg, and the total heat release rate was 39.7 MJ/m2 , and these values were higher than those of pine branches and pine needles. Thus, we determined that the flame propagation speed and fire intensity according to the moisture content can be used to evaluate the risk of fire to the water tube section of pine trees. It is suggested that because of the combustion characteristics of the pine cone in March, that is when the forest is most vulnerable to fires.

Effects of Forest Tending Works on Carbon Storage in a Pinus densiflora Stand

  • Kim, Choon-Sig;Son, Yo-Hwan;Lee, Woo-Kyun;Ha, Yeong-Cheol;Jeong, Jae-Yeob;Noh, Nam-Jin
    • Journal of Ecology and Environment
    • /
    • v.30 no.4
    • /
    • pp.281-285
    • /
    • 2007
  • We conducted research to determine the effects of forest tending works (FTW) on forest carbon (C) storage in Korean red pine forests by estimating changes in the quantity and distribution of stored organic C in an approximately 40-year-old red pine stand after FTW. We measured organic C storage (above- and belowground biomass C, forest floor C, and soil C at 50 cm depth) in the Hwangmaesan Soopkakkugi model forest in Sancheonggun, Gyeongsangnam-do before and after the forest was thinned from a density of 908 trees/ha to 367 trees/ha. The total C stored in tree biomass was 69.5 Mg C/ha before FTW and 38.6 Mg C/ha after FTW. The change in total C storage in tree biomass primarily resulted from the loss of 19.9 Mg C/ha stored in stem biomass after FTW. The total C pool in this red pine stand was 276 Mg C/ha before FTW and 245.1 Mg C/ha after FTW. Prior to FTW, 71.5% of the total C pool was stored in mineral soil, 25.2% in tree biomass, and 3.3% in the forest floor, where as after FTW 80.5% of the total C pool was stored in mineral soil, 15.7% in tree biomass and 3.7% in the forest floor. These results suggest that the development of site-specific tending techniques may be required to minimize the loss of tree biomass C storage capacity in red pine stands from FTW.

Depositional characteristics of atmospheric polybrominated diphenyl ethers on tree barks

  • Chun, Man Young
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.3.1-3.7
    • /
    • 2014
  • Objectives This study was conducted to determine the depositional characteristics of several tree barks, including Ginkgo (Ginkgo biloba), Pine (Pinus densiflora), Platanus (Platanus), and Metasequoia (Metasequoia glyptostroboides). These were used as passive air sampler (PAS) of atmospheric polybrominated diphenyl ethers (PBDEs). Methods Tree barks were sampled from the same site. PBDEs were analyzed by high-resolution gas chromatography/high-resolution mass spectrometer, and the lipid content was measured using the gravimetric method by n-hexane extraction. Results Gingko contained the highest lipid content (7.82 mg/g dry), whereas pine (4.85 mg/g dry), Platanus (3.61 mg/g dry), and Metasequoia (0.97 mg/g dry) had relatively lower content. The highest total PBDEs concentration was observed in Metasequoia (83,159.0 pg/g dry), followed by Ginkgo (53,538.4 pg/g dry), Pine (20,266.4 pg/g dry), and Platanus (12,572.0 pg/g dry). There were poor correlations between lipid content and total PBDE concentrations in tree barks ($R^2$=0.1011, p =0.682). Among the PBDE congeners, BDE 206, 207 and 209 were highly brominated PBDEs that are sorbed to particulates in ambient air, which accounted for 90.5% (84.3-95.6%) of the concentration and were therefore identified as the main PBDE congener. The concentrations of particulate PBDEs deposited on tree barks were dependent on morphological characteristics such as surface area or roughness of barks. Conclusions Therefore, when using the tree barks as the PAS of the atmospheric PBDEs, samples belonging to same tree species should be collected to reduce errors and to obtain reliable data.

Aboveground Nutrient Distribution in Pitch Pine (Pinus rigida) and Japanese Larch (Larix leptolepis) Plantations (리기다소나무와 낙엽송조림지(落葉松造林地)의 지상부(地上部) 양분분포(養分分布) 특성(特性))

  • Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.2
    • /
    • pp.266-272
    • /
    • 1999
  • Aboveground biomass and nutrient contents of a 31-year-old pitch pine(Pinus rigida) and a 31-year-old Japanese larch(Larix leptolepis) plantations were measured in the Chungbu Forest Experiment Station, Kyunggi Province. Aboveground biomass was 170.2ton/ha in the pitch pine and 87.2ton/ha in the Japanese larch plantations. Aboveground biomass difference between both plantations was due to the difference of stand density. Aboveground biomass in both plantations was allocated as follows : stemwood>branch>stembark>needle. The concentrations of all nutrients(N, P, K, Ca, Mg) were generally higher in the Japanese larch needle than in the pitch pine because of high nutrient uptake characteristics of larch compared with pine tree species. The nutrient concentration in different tree tissues in both tree species decreased in the order of needle>branch>stembark>stemwood. Nutrient contents of aboveground biomass were : N, 335.9 ; P, 40.4 ; K, 121.4 ; Ca, 188.6 ; Mg, 93.8kg/ha in the pitch pine plantation, while nutrient contents in the Japanese larch plantation were : N, 226 ; P, 11.5 ; K, 72.9 ; Ca, 75.7 ; Mg, 37.1kg/ha. The nitrogen use efficiency calculated as the biomass produced by one unit of nitrogen was higher in the pitch pine than in the Japanese larch plantations. This result suggests that pine with high nitrogen use efficiency could be adapted in lower site productivity area compared with larch tree species.

  • PDF