• Title/Summary/Keyword: pine leaf

Search Result 146, Processing Time 0.031 seconds

Changes of Leaf Area Index, Physiological Activities and Soil Water in Tricholoma matsutake Producing Pine Forest Ecosystem (송이산 소나무림 생태계에서 엽면적지수와 생리적활동 및 토양수분의 변화)

  • Koo, Chang-Duck;Ka, Kang-Hyun;Park, Won-Chul;Park, Hyun;Ryu, Sung-Ryul;Park, Yong-Woo;Kim, Tae-Heon
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.4
    • /
    • pp.438-447
    • /
    • 2007
  • The purpose of this study was to understand the ecosystem structure and function and soil water changes in Tricholoma matsutake producing pine stands. The investigated stands were pine forest in Sogrisan National Park in Chungbuk-do of Korea. For the purpose we investigated main vegetation, leaf area index(LAI) as ecosystem structural factors and measured photosynthesis, transpiration, xylem water potential, and soil water changes as ecosystem functional factors. Vertical vegetation structure of the site was composed of Pinus densiflora as a overstory species, Quercus mongolica as midstory, Rhododendron mucronulatum, R. schlippenbachii and Fraxinus sieboldiana as understory ones. In the stands LAI was 3.8 during June to September, 2.6 in October and 2.1 during November to April. Photosyntheses of the trees were 6.0 to $7.0{\mu}mol\;CO_2/m^2/s$ in August, and for P. densiflora about $4.0{\mu}mol\;CO_2/m^2/s$ and for Q. mongolica $2.0{\mu}mol\;CO_2/m^2/s$ in mid October. However, R. mucronulatum stopped fixing $CO_2$ and F. sieboldiana shed off the leaves already in mid October. Transpirations were 2.5 to $3.5mmol\;H_2O/m^2/s$ in late August and about $1.0mmol/H_2O/m^2/s$ in mid October. Plant water potentials were -10 to -22 bars for P. densiflora and -5 to -12 bars for the other woody species. The lowest potentials was in late August and highest in late October. Soil water in the stand was closely related to topography. Soil water contents were 7 to 11% at the ridge, 8 to 15% at the hillside and 11 to 19% at the base. Soil temperatures were 0.2 to $0.4^{\circ}C$ higher in T. matustuake colony than noncolony. Mid September soil temperature decreased to $19^{\circ}C$ at which T. matsutake forms primordia. In T. matsutake colony soil moisture was 0.5 to 2.0% lower due to metabolism for consuming water. We suggest that the complicate relationships between ecosystem structure and function in Tricholoma matsutake producing pine stand need to be further investigated.

Studies on the Use of Sticky Agent for Control of Population Density Of the Pine Gall Midge, Thecodiplosis japonensis UCHTDA et INOUYE (솔잎혹파리의 성충밀도를 줄이기 위한 점착물질의 이용에 관한 연구)

  • Woo K.S.;Shim J.W.
    • Korean journal of applied entomology
    • /
    • v.18 no.4 s.41
    • /
    • pp.153-160
    • /
    • 1979
  • The present experiments were carried out to reduce the population density of adult pine gall midge, Thecodiplosis japonensi,s UCHIDA et INOUYE, by means of spray the sticky agent C-4, on the ground, herbacious plantation and foliar leaf of pine trees at Sanbonli,. Anyang, Kyungido. And also the 3 periods of treatment, such as before 2 weeks( I ), before 1 week (II) from the peak emergence period and peak emergence period (III) were applied. The experimental results obtained were as follows. (1) The formula of selected sticky agent C-4 was $70\%$ of castor oil, $25\%$ of damar resin and $5\%$ of carnauba wax, and it showed the best both on stickiness and duration, and lower phytotoxicity to the host plant. (2) The reduction of population densities of the adult PGM were $68\%$ and 78f: in the G-I and G-II treatment plot respectively, which compared to control, on the ground spray. (3) And the reduction of population densities were $63\%$ and about $90\%$ in the P-I and P-II plot respectively when the agent was sprayed on the herbacious plantation. (4) The rates of gall formation were $32.8\%,\;40.8\%\;and\;59.4\%$ in the spray plots of F-I, F-II, and F-III respectively, and there was no significant difference among the upper, middle and lower parts of the treated host plant in the rates of gall formation. (5) The effective stage of sticky agent application were considered as before one week from the peak emergence period in tile all types of treatment.

  • PDF

Effects of an aqueous red pine (Pinus densiflora) needle extract on growth and physiological characteristics of soybean (Glycine max)

  • Hwang, Jeong-Sook;Bae, Jeong-Jin;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • v.34 no.3
    • /
    • pp.279-286
    • /
    • 2011
  • The effect of allelochemicals on growth, root nodule nitrogen fixation activity, and ion patterns of soybeans were investigated. We prepared 50 g/L (T50), 100 g/L (T100), and 200 g/L (T200) extract concentrations by soaking fresh red pine needles in a nutrient solution. Adding needles to the nutrient solution increased the content of total phenolic acids, osmolality, and total ions. The total phenolic content in the T50, T100, and T200 extracts were $206{\pm}12.61$, $335{\pm}24.16$, and $603{\pm}12.30$ mg gallic acid equivalents, respectively. The $K^+$, $Mg^{2+}$, $Ca^{2+}$, and $PO_4^{3-}$ content increased by adding needles to the nutrient solutions, whereas $SO_4^{2-}$ content decreased. The growth inhibition of soybeans was proportional to the needle extract concentrations, and the T100 and T200 concentrations resulted in remarkable growth inhibition. On day 20 after treatment, dry weight and nitrogen fixation activity of the root nodules were reduced by the T100 and T200 treatments, whereas the T50 treatment was not difference from the control. After day 10, total ion content in all treatment groups was not different in comparison with the control. However, total ionic content in all treatment groups decreased significantly compared with that in the control after day 20. The lowest total ion value was found for the T200 concentration. The T200 treatment also resulted in significantly reduced $SO_4^{2-}$ content. The amounts of $Mg^{2+}$, $Ca^{2+}$, and $Mn^{2+}$ were higher than those of the control for the T50 treatment on day 10 and for T100 on day 20 after treatment. A significant increase in osmolality was observed in the T200 treatment on day 10 and in the T100 treatment on day 20. These results suggest that under severe allelochemical stress conditions, a remarkable reduction in nodule formation, nitrogen fixation activity, and ion uptake eventually resulted in a decrease in leaf production. Furthermore, increased $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Mn^{2+}$, and osmolality in soybeans exposed to lower concentrations of allelochemicals than the critical stress level helped overcome the stress.

Studies on the Productivity of Korean White Pine Forest (I) Effects of Temperature, Light and Water Stress on Photosynthesis and Dark Respiration Rates of Leaves (잣나무림(林)의 물질생산력(物質生産力)에 관(関)한 연구(硏究) (I) 엽(葉)의 광합성속도(光合成速度)와 호흡속도(呼吸速度)에 미치는 광(光)․온도(溫度)․수분(水分)의 영향(影響))

  • Han, Sang Sup
    • Journal of Korean Society of Forest Science
    • /
    • v.55 no.1
    • /
    • pp.55-58
    • /
    • 1982
  • This study is to investigate the effects of temperature, light and water deficit on apparent phytosynthesis rate (Pn) and dark respiration rate(Rd) of leaves in the series of studies dealing with primary productivity of korean white pine forest. The results obtained are as follows: 1. The light saturation for Pn occured at about 40 Klux, and light compensation at 1.0 to 1.3 Klux. 2. The Pn of current leaves was highest, and Pn was decreased with increasing leaf age. 3. The Rd on the response of temperature in February was about two times value in all of the temperature ranges as compared with the ones in August. 4. The incipient water stress, above which Pn and Rd declined from 100%, was different for Pn(-10bar). The high water stress required to reduce Pn to nearly 0%, at -24 bar, but Rd was only 43% at -24 bar. 5. The optimum temperature range for Pn showed about 15 to $18^{\circ}C$ in February and 23 to $26^{\circ}C$ in August.

  • PDF

Changes of Inorganic Nitrogen and CO2 Evolution Rate on the Decomposition Process of Korean White Pine Needles (잣나무엽(葉)의 초기(初期) 분해과정(分解過程)에 있어서 무기태(無機態) 질소(窒素) 및 CO2 방출속도(放出速度)의 변화(變化))

  • Yi, Myong Jong;Han, Sang Sup;Kim, Jeong Je
    • Journal of Korean Society of Forest Science
    • /
    • v.69 no.1
    • /
    • pp.13-18
    • /
    • 1985
  • Forest soils mixed with organic matters (green needle, flesh needle litter and needle litter in F layer of Pinus koraiensis, and green leaf of Quercus dentata and Q. variabilis) were incubated under a constant $30^{\circ}C({\pm}1)$ for 53 days to measure the changes of inorganic nitrogen and $CO_2$ evolution rate. The results obtained were summarized as follows; 1) In the early incubation period the amounts of total inorganic nitrogen in soils by mixture of organic matters decreased rapidly because of immobilization by microbial uptake, and thereafter their amounts increased with further incubation. 2) The rate of immobilization of organic nitrogen in mixed organic matters was the highest in green needle among green needle, flesh needle litter and needle litter in F layer of P. koraiensis, but lower than that of green leaf of Q. variabilis and Q. dentata. 3) The rates of $CO_2$ evolution from soils mixed with organic matters increased sharply in the early time, and then decreased slowly with increasing time. The order of the $CO_2$ evolution rate was green leaf of Q. variabilis > green leaf of Q. dentata > green needle of P. koraiensis > flesh needle litter of P. koraiensis > needle litter of P. koraiensis in F layer from the largest to the least. 4) Nitrate nitrogen concentrations showed a tendency to increase throughout incubation time, so that their concentrations after 53 days were higher than that of ammonium nitrogen.

  • PDF

Studies on the Cultuer of Cool-Season Grasses in Forest (목초의 임간재배에 관한 연구)

  • 이종열
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.5 no.1
    • /
    • pp.33-36
    • /
    • 1985
  • This experiment was carried out to investigate the effect of crown density of trees on the growth and yield of cool-season grasses in forest. The species used in this study was orchard-grass (Dactylis glomerata L.) and 4 levels of tree crown density(O=full sunlight, 25, 50 and 75%) were treated. The experiment was performed at the experimental filed of the Livestock Experiment Station in Suweon, during 1979 to 1950. The results obtained are summarized as follows: 1. Maximum leaf area was obtained at 25% crown density of trees, followed by 0, 50 and 75%, regardless of cutting times. 2. Plant height tended to increase as the crown density of trees increased. However, there was no difference between 0% and 25% crown density of trees. 3. There was a negative correlation between plant height and leaf area of orchardgrass grown under pine trees. 4. The more dry matter yield of orchardgrass was obtained at 25% crown density of trees (p<0.05), follwed by 0, 50 and 75%, respectively. However, there was no significant difference between 0% and 50% crown density of trees. Therefore it is suggested that the critical level of crown density of trees is 50% to culture of cool-season grasses in forest.

  • PDF

Litter Production and Nutrient Contents of Litterfall in Oak and Pine Forests at Mt. Worak National Park

  • Mun, Hyeong-Tae;Kim, Song-Ja;Shin, Chang-Hwan
    • Journal of Ecology and Environment
    • /
    • v.30 no.1
    • /
    • pp.63-68
    • /
    • 2007
  • Litter production, nutrient contents of each component of litterfall and amount of nutrients returned to forest floor via litterfall were investigated from May 2005 through April 2006 in Quercus mongolica, Quercus variabilis and Pinus densiflora forests at Mt. Worak National Park. Total amount of litterfall during one year in Q. mongolica, Q. variabilis and P. densiflora forests was 542.7, 459.2 and $306.9\;g\;m^{-2}\;yr^{-1}$, respectively. Of the total litterfall, leaf litter, branch and bark, reproductive organ and the others occupied 50.3%, 22.7%, 10.1 % and 16.9% in Q. mongolica forest, 81.9%, 7.2%, 3.1% and 7.9% in Q. variabilis forest, 57.4%, 12.8%, 5.6% and 24.1 % in P. densiflora forest, respectively. Nutrients concentrations in oak litterfall were higher than those in needle litter. N, P, K, Ca and Mg concentration in leaf litterfall were 13.8, 1.1, 7.2, 4.2 and 1.3 mg/g for Q. mongolica forest, 10.5, 0.7, 3.2, 3.7 and 1.6 mg/g for Q. variabilis forest, 5.3, 0.4, 1.2, 2.8 and 0.6mg/g for P. densiflora forest, respectively. The amount of annual input of N, P, K, Ca and Mg to the forest floor via litterfall was 43.36, 2.89, 21.38, 23.31 and $5.62\;kg\;ha^{-1}\;yr^{-1}$ for Q. mongolica forest, 32.28, 2.01, 10.23, 20.29 and $7.78\;kg\;ha^{-1}\;yr^{-1}$ for Q. variabilis forest, 15.80, 1.04, 3.99, 9.70 and $2.10\;kg\;ha^{-1}\;yr^{-1}$ for P. densiflora forest, respectively.

A new record of fern species from Korean flora: Asplenium septentrionale (L.) Hoffm. (Aspleniaceae) (한국 미기록 양치식물: 솔잎고사리(꼬리고사리과))

  • Son, Sung-Won;Lee, Han-Kweon;Yang, Hyung-Ho;Lee, Kang-Hyup;Kim, Sung-Sik;Kwon, Hyejin;Cho, Yong-Chan
    • Korean Journal of Plant Taxonomy
    • /
    • v.43 no.2
    • /
    • pp.90-93
    • /
    • 2013
  • Asplenium septentrionale (L.) Hoffm., belonging to the family Aspleniaceae, was recently recorded for the first time in Gyeongsangbuk-do, Uljin-gun, Buk-myeon, Docheon-ri. This species is distributed in Northern America, Europe, and Asia. This species, which is related by taxa of Asplenium, is distinguished in that it possesses a leaf blade that is more or less dichotomously divided, forked 1-2(-3) times, and narrowly linear (5- 20 mm length) sori. The newly given Korean name, 'Sol-ip-go-sa-ri' reflects the presence of a linear leaf similar to Korean pine needles. A description of the key characteristics, an illustration, and photographs of the habitats of this plant are provided in this report.

Ginsenosides analysis of New Zealand-grown forest Panax ginseng by LC-QTOF-MS/MS

  • Chen, Wei;Balan, Prabhu;Popovich, David G.
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.552-562
    • /
    • 2020
  • Background: Ginsenosides are the unique and bioactive components in ginseng. Ginsenosides are affected by the growing environment and conditions. In New Zealand (NZ), Panax ginseng Meyer (P. ginseng) is grown as a secondary crop under a pine tree canopy with an open-field forest environment. There is no thorough analysis reported about NZ-grown ginseng. Methods: Ginsenosides from NZ-grown P. ginseng in different parts (main root, fine root, rhizome, stem, and leaf) with different ages (6, 12, 13, and 14 years) were extracted by ultrasonic extraction and characterized by Liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Twenty-one ginsenosides in these samples were accurately quantified and relatively quantified with 13 ginsenoside standards. Results: All compounds were separated in 40 min, and a total of 102 ginsenosides were identified by matching MS spectra data with 23 standard references or published known ginsenosides from P. ginseng. The quantitative results showed that the total content of ginsenosides in various parts of P. ginseng varied, which was not obviously dependent on age. In the underground parts, the 13-year-old ginseng root contained more abundant ginsenosides among tested ginseng samples, whereas in the aboveground parts, the greatest amount of ginsenosides was from the 14-year-old sample. In addition, the amount of ginsenosides is higher in the leaf and fine root and much lower in the stem than in the other parts of P. ginseng. Conclusion: This study provides the first-ever comprehensive report on NZ-grown wild simulated P. ginseng.

Growth and Mycorrhizal Formation of Pinus thunbergii Seedlings Grown in Growth Chamber (Growth Chamber 내(內)에서 생육(生育)한 해송묘(海松苗)의 생장(生長)과 균근형성(菌根形成))

  • Oh, Kwang In;Park, Whoa Shig
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.3
    • /
    • pp.316-321
    • /
    • 1990
  • This study was carried out to indentify the mycorrhizal development and growth stimulation of Pinus thunbergii seedlings grown on soil growth media which mixed with various amounts of pine bark. The results were follow ; 1. Seedlings inoculated with Pisolithus tinctorius were significantly increased in number of short roots and mycorrhizal short roots, height, maximum growth rate, and leaf area than those of no-inoculation. 2. Mycorrhizal formation according to bark contents was highest by 25% bark treatment, and decreased in 50 and 75% bark contents. 3. Within the same treatment of bark content, seedlings inoculated with Pisolithus tinctorius showed more increased height and leaf, stem, and root dry weight than those of no-inoculated.

  • PDF