• Title/Summary/Keyword: pin crusher

Search Result 2, Processing Time 0.017 seconds

Development of New Powdered Additive and Its Application for Improving the Paperboard Bulk and Reducing Drying Energy (I) -Analysis of Chemical and Physical Properties of Brewers Grain - (산업용지의 벌크 향상 및 건조에너지 절감을 위한 분말상 첨가제 제조기술 개발 (I) - 신규 유기물질 맥주박의 화학적.물리적 특성 평가 -)

  • Lee, Ji-Young;Kim, Chul-Hwan;Choi, Jae-Sung;Kim, Byeong-Ho;Lim, Gi-Baek;Kim, Da-Mi
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.2
    • /
    • pp.58-66
    • /
    • 2012
  • Brewers grain is a byproduct of beer brewing and consists primarily of grain husks, pericarp, and fragments of endosperm. Although this material is consumed by animals and used as fertilizer, a large amount of brewers grain is simply discarded. Therefore, new methods for utilizing this fibrous resource should be pursued. In this study, we examined the potential utilization of brewers grain as an additive in the paperboard industry by determining the chemical composition of brewers grain and the physical properties of brewers grain powders after grinding with two types of grinders. We found that brewers grain had a lower holocellulose content and higher lignin content and intermediate ash content when compared to other biomass materials, and did not contain any contaminants that would interfere with the papermaking process. Particles had a higher fiber length, less fiber width, and narrower shape factor distribution when ground by a blender type grinder than by a pin crusher type grinder. The blender type grinder was concluded to make regular brewers grain particles appropriate for papermaking.

Effect of Particle Size on the Solubility and Dispersibility of Endosperm, Bran, and Husk Powders of Rice

  • Lee, Jeong-Eun;Jun, Ji-Yeon;Kang, Wie-Soo;Lim, Jung-Dae;Kim, Dong-Eun;Lee, Kang-Yeol;Ko, Sang-Hoon
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.833-838
    • /
    • 2008
  • Size effects of rice product powders on physical properties including suspension stability were investigated in this study. Endosperm, bran, and husk powders of rice with different size particles were prepared using the pin crusher or the ultrafine air mill. The physical properties of the powders were examined using particle size analysis, scanning electron microscopy, and spectrophotometry. The peak of the volume-weighted particle distribution of ultrafine endosperm particles was at $5.4\;{\mu}m$ whereas those of the bran and the husk appeared at 65 and $35\;{\mu}m$, respectively. Ultrafine particles of the endosperm and the husks dispersed better than larger-sized particles. As time elapsed, the dispersibility decreased, but the ultrafine particles were precipitated at the slowest rate. Our results suggest that ultrafine particles, including future nanosized particles, provide improved solubility and dispersibility resulting in better stability in the food colloidal suspension.