• Title/Summary/Keyword: pile movement

Search Result 124, Processing Time 0.023 seconds

A Study of Rectangular-shaped Passive Row Piles in Horizontal Sand-ground under Lateral Soil Movement by Model Test (수평모래지반에서 측방변형을 받는 사각형 수동 열말뚝에 관한 실험적 연구)

  • Bae, Jong-Soon;Kwon, Min-Jea
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.23-36
    • /
    • 2008
  • This study describes model tests on instrumented rectangular-shaped passive row piles embedded in horizontal sand-ground undergoing lateral soil movement. We tried to find the property of row piles dependent on the shape of pile, including the position of the pile in row, pile spacing, and soil movement. The results of test are as follows. The lateral earth pressure diagram variously appeared to be triangle, trapezoid and rectangular by shape and position of pile. The outer pile has a larger bending moment than the inner pile in the case of B-type, the inner piles has larger one than outer pile in case of H-type. $R_f$ (the ratio of resistance to lateral soil movement) was found to increase with increasing pile spacing irrespective of pile-shape. Y/L (location of action of lateral resistance force) for $d_s$ (displacement of soil) and $S_h$ (spacing of pile) appeared to be nearly regular position, and H-type is higher than B-type.

Analysis of Reinforcement Effect of Steel-Concrete Composite Piles by 3-Dimensional Numerical Analysis (3차원 수치해석을 이용한 강관합성말뚝의 보강효과 분석)

  • Kim, Sung-Ryul;Lee, Si-Hoon;Chung, Moon-Kyung;Lee, Ju-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.404-411
    • /
    • 2009
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, the load-movement relations and the reinforcement effect by the outer steel pipe in the steel-concrete composite pile were analyzed by performing three-dimensional numerical analyses, which can simulate the yielding behavior of the pile material and the elasto-plastic behavior of soils. The parameters analyzed in the study include three pile materials of steel, concrete and composite, pile diameter and loading direction. As the results, the axial capacity of the composite pile was 1.9 times larger than that of the steel pipe pile and similar with that of the concrete pile. At the allowable movement criteria, the horizontal capacity of the composite pile was 1.46 times larger than that of the steel pile and 1.25 times larger than that of the concrete pile. In addition, the horizontal movement at the pile head of the composite pile was about 78% of that of the steel pile and about 53% of that of the concrete pile, which showed that the movement reduction effect of the composite pile was significant and enables the economical design of drilled shafts.

  • PDF

The Study of Group Piles under Lateral Soil Movement in Sand by Model test (모래지반에서 측방변형을 받는 무리말뚝의 실험적 연구)

  • Bae, Jong-Soon;Kim, Sung-Ho;Kwon, Min-Jea
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.165-172
    • /
    • 2006
  • This study describes a series of model tests on instrumented pile groups embedded in HAP-CHEN sand undergoing lateral movement. We tried to find the effect of group piles dependent on a number of factors, including the position of the pile in a group, the pile spacing, and the pile arrangement. The results of test are as follows. For the group piles, the bending moment profile for each pile is similar in shape to that of single pile, although the magnitude and the position of the maximum bending moment are different. $R_M$ (the ratio of maximum bending moment) and $R_F$ (the ratio of resistance to lateral soil movement) were found to increase with increasing pile spacing. When a pile is in a group under lateral soil movement, RM increased in the order of the middle row, front row, back row, according to the direction of lateral deformation, and the outer pile has a larger RM than the inner pile.

Response of a laterally loaded pile group due to cyclic loading in clay

  • Shi, Jiangwei;Zhang, Yuting;Chen, Long;Fu, Zhongzhi
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.463-469
    • /
    • 2018
  • In offshore engineering, lateral cyclic loading may induce excessive lateral movement and bending strain in pile foundations. Previous studies mainly focused on deformation mechanisms of single piles due to lateral cyclic loading. In this paper, centrifuge model tests were conducted to investigate the response of a $2{\times}2$ pile group due to lateral cyclic loading in clay. After applying each loading-unloading cycle, the pile group cannot move back to its original location. It implies that residual movement and bending strain are induced in the pile group. This is because cyclic loading induces plastic deformation in the soil surrounding the piles. As the cyclic load increases from 62.5 to 375 kN, the ratio of the residual to the maximum pile head movements varies from 0.30 to 0.84. Moreover, the ratio of the residual to the maximum bending strains induced in the piles is in a range of 0.23 to 0.82. The bending strain induced in the front pile is up to 3.2 times as large as that in the rear pile. Thus, much more protection measures should be applied to the front piles to ensure the serviceability and safety of pile foundations.

Visual Measurement of Pile Movement for the Foundation Work using a High-Speed Line-Scan

  • Lim, Mee-Seub;Lim, Joon-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1802-1807
    • /
    • 2004
  • When a construction company builds a high structure, many piles should be driven into the ground by a hammer whose weight is 7,000 Kg in order to make the ground under the structure safe and strong. So, it is essential to determine whether a pile is penetrated into the ground enough to support the weight of the structure since ground characteristics at different locations are different each other. This paper proposes a visual measurement system for pile rebound and penetration movement including vibration using a high-speed line-scan camera and a specially designed mark to recognize two-dimensional motion parameters of the mark using only a line-scan camera. A mark stacking white and black right-angled triangles is used for the measurement, and movement information for vertical distance, horizontal distance and rotational angle is determined simultaneously

  • PDF

Analysis Method of Passive Piles considering group effect (군말뚝효과를 고려한 수동말뚝의 해석기법)

  • 정상섬;원진오;김병철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.151-158
    • /
    • 2000
  • The lateral deformation of one row pile groups was investigated based on analytical study and a numerical analysis. The emphasis was on quantifing the load transfer of pile groups subjected to lateral soil movement. An analytical method to consider pile-soil interaction in weathered soil was developed using load-transfer curve methods. Through the comparative study, it is found that the prediction by present approach is in good agreement with the general trend observed by in-situ measurements.

  • PDF

Analysis of Reinforcement Effect of Steel-Concrete Composite Group Piles by Numerical Analysis (수치해석을 이용한 강관합성 군말뚝의 보강효과 분석)

  • Kim, Sung-Ryul;Lee, Si-Hoon;Chung, Moon-Kyung;Lee, Ju-Hyung;Kwak, Ki-Suk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1132-1139
    • /
    • 2010
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, the load-movement relations and the reinforcement effect by the outer steel pipe in the steel-concrete composite pile were analyzed by performing three-dimensional numerical analyses, which can simulate the yielding behavior of pile material and the elasto-plastic behavior of soils. The parameters analyzed in the study include three pile materials of steel, concrete and composite, pile diameter, pile distance and loading direction. As the results, the axial capacity of the composite pile was about 73% larger than that of the steel pipe pile and about 14% larger than that of the concrete pile. In addition, the horizontal movement at the pile head of the composite pile was about 51% of that of the steel pile and about 19% of that of the concrete pile.

  • PDF

A Case Study on the Application of EPS Construction Method Considering Abutment Displacement in Soft Ground (연약지반에서의 교대변위를 고려한 EPS공법의 적용사례 연구)

  • Kang, Hee-June;Oh, Ill-Rok;Chae, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.698-705
    • /
    • 2004
  • Application of structural load on soft ground can cause lateral movement as well as ground break due to pressing and shearing of ground. Especially, abutment supported by pile foundation can make pile deformed due to lateral movement of ground in order to have harmful effect on structure. According to the result of this study, it is required to consider disturbance of weak soil layer when using lateral movement countermeasure method by EPS construction method as a result of performing study on safety review and EPS construction method with respect to this based on site where lateral movement occurs due to backside soil filling load at bridge abutment installed on weak ground, and it is required to sufficiently consider soil reduction during design of EPS construction method due to lateral movement deformation of soft clay layer by losing ground horizontal resistance force due to plasticity of ground around pile as well as combination part damage with pile head and expansion foundation.

  • PDF

A Study on Lateral Movement of Bridge Abutment on Soft Ground (연약지반상 교대의 측방이동에 관한 연구)

  • 홍원표;한중근
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.53-66
    • /
    • 1994
  • In case of using pile foundation to support bridge abutments on soft ground, the soft ground often causes serious troubles such as lateral movement of the bridge abutments. The foundation piles in soil undergoing lateral movement is one of the typical passive piles. However, Generally, on design of the piles for abutments, the piles have not been considered as a passive piles; sofar:. Because it is difficult to assess the effect of the lateral movement on the desigin and reasonable design method is not established yet. In this study, several abutments, of which lateral movement was taken place, was investigated. Based on the investigation a criterion was presented to assess the lateral movement of the soft soil under backfill for abutment. By use of the criterion, the lateral movement of abutment could be predicted. As the results of thin study, it was anon that the lateral movement of abutment could be occured when the safety factor of slope stability is lese than either 1.5(without the pile effect) or 1.8 (with the pile effect). Especially, excessive lateral movements were occurred when the safety factor of slope stability is less than either 1.0(without the pile effect) or 1.1 (with the pile effect).

  • PDF

An experimental study on the resistance and movement of short pile installed in sands under horizontal pullout load

  • Kwon, Oh Kyun;Kim, Jin-Bok;Kweon, Hyuck-Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.87-97
    • /
    • 2014
  • In this study, the model tests were conducted on the short piles installed in sands under a horizontal pullout load to investigate their behavior characteristics. From the horizontal loading tests where dimensions of the pile diameter and length, and loading point were varied, the horizontal pullout resistance and the rotational and translational movement pattern of the pile were investigated. As a result, the horizontal pullout resistance of the pile embedded in sands was dependent on the pile length, diameter, loading point, etc. The ultimate horizontal pullout load tended to increase as the loading point (h/L) moved to the bottom from the top of the pile, regardless of the ratio between the pile length and diameter (L/D), reached the maximum value at the point of h/L = 0.75, and decreased afterwards. When the horizontal pullout load acted on the upper part above the middle of the pile, the pile rotated clockwise and moved to the pullout direction, and the pivot point of the pile was located at 150-360mm depth below the ground surface. On the other hand, when the horizontal pullout load acted on the lower part of the pile, the pile rotated counterclockwise and travelled horizontally, and the rotational angle was very small.