• Title/Summary/Keyword: pile driving

Search Result 185, Processing Time 0.028 seconds

Driveability Analysis of U-type Sheet Pile using WEAP Program (WEAP 프로그램을 이용한 U형 널말뚝의 항타관입성 해석)

  • Kim Byoung-Il;Kim Jae-Kyu;Lee Seung-Hyun;Lee Jong-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.671-678
    • /
    • 2006
  • Vibratory pile driving has an advantage of reduced noise pollutions compared to impact pile driving and it has been very widely used in the installation of sheet piles. However, very little has been known about the driveability characteristics of sheet pile under vibratory driving. So, the proper sheet piles and vibratory hammer for an given soil profile and depth are determined on a empirical basis. In this study. the driveability of U-type sheet piles are analytically estimated using the commercial WEAP(Wave Equation Analysis of Piles) program. The WEAP analysis shows that penetration rate of sheet pile decreases as N value increases. And if penetration length is not over 20 meters, the rate of penetration decreases as the sectional area of sheet pile increases.

  • PDF

A Numerical Study on Stress Wave Propagation from Pile Driving (말뚝항타시 발생하는 응력파의 전파특성에 관한 수치해석적 연구)

  • 이종세;임정진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.123-130
    • /
    • 2002
  • The ground-borne vibration from pile driving is causing many public discontents. However, because of the fact that the characteristics of wave propagation and attenuation are not well understood, systematic and effective vibration reduction measures can not be taken. This paper attempts to study the propagation of stress waves induced by the pile driving. To simulate the wave propagation in a semi-infinite domain, the so-called absorbing boundaries are incorporated in the finite element method and a series of numerical simulations is performed. Numerical results show that the surface displacement and velocity increase first and then decrease as the pile penetration depth becomes larges.

  • PDF

A Study on the Effect of Lateral Vibration of Sheet Pile on Vibratory Driving Force (널말뚝의 횡방향진동이 진동타입력에 미치는 영향에 대한 연구)

  • Lee, Seung-Hyun;Kim, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.848-852
    • /
    • 2007
  • Many numerical analysis tools for predicting penetration speed of sheet pile are thought to be unreliable because they overestimate penetration speed for shallow depth of penetration. In order to overcome the defects of numerical analysis, lateral vibration model of sheet pile was suggested and energy consumption due to lateral vibration of sheet pile was estimated. Also, load reduction factor which explains reduction of vibratory driving force due to lateral vibration was introduced.

  • PDF

Feasibility Appraisal and Proposal of a Pile Driving Formula for Domestic Pre-bored Pile Management (국내 매입 말뚝 관리를 위한 항타공식 활용 가능성 평가 및 제안에 관한 연구)

  • Kim, Gunwoong;Seo, Seunghwan;Kim, Juhyong;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.71-84
    • /
    • 2023
  • In accordance with Korean structural foundation design standards, dynamic or static load tests are mandated for 1 to 3% of total piles. The construction quality of the remaining 97% to 99% of piles is determined through penetration measurements. This study aims to enhance the quality control of the majority of piles by adopting a pile driving formula that considers both penetration and hammer energy. The current challenge lies in adapting existing overseas driving formulas to the domestic site conditions, characterized by shallow weathered or soft rocks, and the prevalent use of pre-bored piles. To address this, the Modified Gates formula was refined using domestic dynamic load data, thereby improving its applicability to pile management. Despite employing fewer variables, the proposed formula demonstrates a comparable accuracy to dynamic loading tests in predicting the bearing capacity of pre-bored piles. Consequently, this formula holds promise for practical use in future pile quality management.

A Study on Hammer Performance Evaluation (항타장비의 성능평가 연구)

  • 홍헌성;이명환;조천환;김성회;전영석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.405-412
    • /
    • 2002
  • The performance of a hammer/driving systems is a major factor which affects bearing capacity and integrity of installed piles. Hammer performance can be evaluated from the results of dynamic pile testing using Pile Driving Analyzer(PDA). By comparing the rated energy with measured maximum transferred energy(EMX), the energy transfer ratio(ETR) can be calculated. This paper based on the dynamic measurements of 442 cases in 130 piling projects and evaluated ETR according to the hammer types(hydraulic and drop hammers) and pile types(steel and concrete piles).

  • PDF

Effect of Pile Driving on Three Layered Pipeline according to Soil Properties Variation (지반 물성값에 따른 항타 진동이 지중 삼중관에 미치는 거동 분석)

  • Yoo, Han-Kyu;Choi, Joung-Hyun;Won, Jong-Hwa;Kim, Moon-Kyum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.765-770
    • /
    • 2010
  • In this study, the behavior of underground pipeline subjected to pile driving is examined using the verified finite element model based on the field experiment. Young's modules of surface soil is varied and elastic modulus of the other soil layer is fixed. The pile driving force model proposed by Mounir E. Mabsout in 1999 was used and it was functions of time and of force. The forcing function applied on this study considers the kinetic energy of ram located at 1.2m height with 7 tonf. The 3-layered pipeline is composed of steel(inner) pipe, PUR(Polyurethane Resin, filler) and HDPE(outer) pipe, and the length/diameter of main steel pipe is 20m/0.8m(O.D). It is used for district heating pipes in Korea. The results are expressed in terms of Von Mises stress, displacement, and vibration velocity for each soil condition. From the results of the analyses, PUR which is originally intended as a thermal insulation of inner pipe shows performance as a structural member which distributes external pressure.

  • PDF

Experimental Study on Vibration Reduction Estimation of PRD Pile Driving Method (PRD Pile Driving공법의 진동저감 평가를 위한 실험적 연구)

  • Kang, Sung-Hoo;Park, Sun-Joon;Jung, Seok-Gyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.775-782
    • /
    • 2008
  • In this study, ground vibrations and aero space noises that is produced by the PRD(percussion rotary drill) were analyzed by work processes. Ground vibration equations were suggested by $2.798(SD)^{-0.793}$, $3.485(SD)^{-0.793}$, $3.705(SD)^{-0.793}$, according to experiment result, and these equations have reliability of 50%, 90%, 95%, respectively. Ground vibration values by the PRD method correspond to level of $5{\sim}34%$ of values that are assumed by the Attewell & Farmer's equation, and these result compares in reliability 50%. Also, those values were analyzed that correspond to level of $12{\sim}26%$ of ground vibration values by the Prof. Park etc.'s equations. But, the aero space noise was evaluated that is assumed by 88.9 dB(A) at separated distance 50m and is not satisfied even 85dB(A) that is the most negative noise value that present in domestic noise standard. The PRD method was analyzed that noise decrease effect exists hardly comparing with general pile driving method of construction. When is based in these results, the PRD method is judged that it is desirable that classify by the Low-vibration method more than the Non-violation noise method.

A Study on the Effect of Suspension of Vibro Pile Driver on Pile Driving System (진동타입기의 서스펜션이 진동시스템에 미치는 영향에 대한 연구)

  • Lee, Seung-Hyun;Kim, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.826-831
    • /
    • 2007
  • Analytic solutions for pile driving system with and without suspension were presented and influences of suspension on the driving system were discussed. According to the results of analysis, magnitude of amplitude of vibratory pile driver with suspension increases as the mass of the suspension increases and soil dampening decreases. As a results of comparing power of vibratory pile driver with suspension with that of design criterion, power versus soil dampening reaches a peak value and then declines. The maximum power increases with mass ratio and the power is always below that of the Vulcan design criterion.

  • PDF