• Title/Summary/Keyword: pile diameter

Search Result 345, Processing Time 0.026 seconds

Uplift Behavior of Group Micropile according to Embedded Pile Condition in Sand (사질토지반에서 그룹 마이크로파일의 설치조건에 따른 인발거동특성)

  • Kyung, Doo-Hyun;Kim, Ga-Ram;Park, Dae-Sung;Kim, Dae-Hong;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.27-37
    • /
    • 2015
  • The micropile is small diameter pile foundation of which diameter is below 300 mm. This system has been applied to reinforce the foundation structure. In the present study, the effects of embedded conditions of group micropiles were investigated from a series of uplift load tests. For the study, uplift load tests were performed using group micropiles in various pile spacing and installation angle. The increase of uplift resistance and the reduction of uplift displacement were investigated in the tests. As the result, the resistances were principally changed by embedded pile angle, the resistance increase were 33%, 59% and 5% for $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ of embedded pile angle. The uplift displacement reduction increases with lower pile spacing condition and the reduction ratios of uplift displacements in the same spacing condition were 50%, 53%, -45% for $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ of embedded pile angle.

A Lateral Behavior Characteristics of Group Concrete Pile by Model Tests (모형실험에 의한 무리 콘크리트 말뚝의 수평거동 특성)

  • Kwon, Oh-Kyun;Park, Jong-Un;Kim, Jin-Bok;Lim, Dong-Hyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.57-64
    • /
    • 2012
  • The lateral behavior characteristics of concrete group pile under the lateral load were examined by the laboratory model tests in this study. Piles were socketed 1D(D : pile diameter) in the concrete block, and model tests were executed on $2{\times}3$ group piles, of which the length were 11D, 15D and 20D. All results of loading tests under each condition was presented by the lateral load-displacement curves, and the displacements in the ground under the lateral loads were measured. As a results of model tests, as the ratio of pile length/diameter(L/D) was decreased, the yielding load and the lateral displacement at that load were increased. The yielding load was evaluated as the load at lateral displacement of 15 mm. The yielding loads at the pile length of 11D, 15D and 20D were 11.7, 6.2kN and 3.4kN. The lateral displacements of pile in the ground under each condition were measured linearly and the failure occurred at the location where the piles were socketed in concrete block.

Applicability of Steel-Concrete Composite Drilled Shafts by Pile Loading Tests (말뚝 재하시험을 이용한 강관합성 현장타설말뚝의 적용성 분석)

  • Lee, Ju-Hyung;Chung, Moon-Kyung;Kwak, Ki-Seok;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.111-123
    • /
    • 2010
  • The steel pipe of steel-concrete composite drilled shafts increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, pile loading tests were performed to analyze the field applicability of a steel-concrete composite drilled shafts. The test ground consisted of 5~7 m thick soil underlying rock mass. The test piles consisted of two steel-concrete composite drilled shafts, which were the concrete filled steel pipe piles with the diameter of 0.508 m, and a concrete pile with the same diameter. The test results showed that the boundary between the upper steel composite section and the lower concrete section was structurally weak and needs to be reinforced by using a inner steel cage. If the boundary is located in deep depth, which is not influenced by lateral load, the allowable strength of the lower concrete section increases, so an economical design can be performed by increasing the design load of steel-concrete composite drilled shafts.

A Study on Lateral Loading the Field Test of Pile for Large Diameter Drilled Shaft Pile (대구경 현장타설말뚝에 대한 현장수평재하시험에 관한 연구)

  • Choi, Yong-Kyu;Lee, Min-Hee;Lee, Chung-Sook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.33-39
    • /
    • 2004
  • Most of pile foundations are a condition of fixed head on pile, but lateral loading test of pile have performed to free head on generally. This study performed field lateral loading test accompanying lateral displacement by depth of pile for two cases(fixed head and free head) and analyzed lateral behavior of large drilled shaft. Furthermore compared theoretical equation with result of lateral loading test.

  • PDF

Centrifuge Model Experiments on Behaviors of Single Pile (단말뚝 거동에 관한 원심모형실험)

  • Yoo, Nam-Jae;Lee, Myeung-Woog;Lee, Jong-Ho
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.111-118
    • /
    • 1997
  • This thesis is an experimental research of investigating behavior of single pile, subjected to the vertical compression loads, using the centrifuge facility located in the geotechnical engineering laboratory in Kangwon National University. Centrifugal model experiments of model pile were carried out changing diameter of model pile, relative density of sandy ground and the gravitational level applied in the centrifuge. Thus, their effects on the load-settlement behavior and the ultimate bearing capacity of pile were investigated. Experimental results obtained from centrifuge model tests were compared with the theoretical or semi-empirical equations to analyze values of ultimate bearing capacity of model pile. When we compare the ultimate bearing capacity of experimental results with the ultimate bearing capacity of theorical results, the experimental results appear more higher in the De Beer method and Meyerhof. Expecially, Terzaghi method is very same as the experimental results normally.

  • PDF

Model Tests of Concrete Pile under Lateral Loads (수평하중을 받는 콘크리트말뚝의 모형실험)

  • Park, Joung-Un;Kim, Jin-Bok;Jin, Hong-Min;Kwon, Oh-Kyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.580-586
    • /
    • 2010
  • The purpose of this study is to analyze the behavior of the concrete pile under the horizontal loads by the model tests in laboratory. The rock ground was modeled by the concrete of about 30MPa, and a model pile was made of some mortar with the capacity of 24MPa. The diameter(D) and length(L) of a model pile was each 1200mm and 1800mm. The embedment depth into the concrete block was varied with 1.0D, 1.5D, and 2.0D in the model tests. The results of model tests showed that the lateral resistance of a pile with the embedment depth of 2.0D was more large than other cases, and the lateral displacement of yielding was similar.

  • PDF

Recycling of In-site waste soil material to fill a hollow between PHC pile and Earthen wall

  • Jang, Myung-Houn;Choi, Hee-Bok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.510-517
    • /
    • 2012
  • This study evaluated the recycling potential of in-site waste soil as pile back filling material (PBFM). We performed experiments to check workability, segregation resistance, bond strength, direct shear stress test, and dynamic load test using in-site waste soil in coastal areas. We found that PBFM showed better performance than general cement paste in terms of workability, segregation resistance, and bond strength. On the other hand, the structural performance of PBFM was slightly lower than that of general cement paste due to the skin friction force of pile by Pile Driving Analyzer and direct shear stress. However, because this type of performance degradation in terms of structure can be improved through the use of piles with larger diameter or by changing the type of pile, considering the economics and environment, we considered that recycling of PBFM has sufficient value.

Numerical Analysis of Belled Shaft Foundation in Thick Pusan Clays (대심도 부산점토에 적용된 종저말뚝(Belled Shaft foundation)의 수치해석 연구)

  • Rao, K.G.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.530-535
    • /
    • 2006
  • The Pusan clays are soft and thick deposits and in some places, they reach even up to 50-70m. So, the pile foundations are inevitable in almost all cases. But they are significantly expansive when the length of the pile reaches about 70m. In this study, a comprehensive parametric study has been carried out in order to reduce the pile length and number of piles required in turn the cost of the foundation for particular building. A belled shaft pile has been optimized for a typical soil profile using the PLAXIS (FEM code). These results have shown a new direction of the pile foundation in Pusan, Korea. The results including the variation of contact pressures at the bottom of the bell, optimization of the angle of the bell and height of the bell in terms of the diameter of the shaft. And also, the design curves have been generated so that they can be directly used for design of belled shaft foundations. However, the structural strength criterion is being checked in the concerned laboratory.

  • PDF

A Study of Prestressed Concrete Pile Stiffness for Structural Analysis of Condominium Remodeling with Vertical Story Extension (수직증축형 공동주택 리모델링 구조해석을 위한 PC말뚝 강성에 관한 연구)

  • Choi, Changho;Lee, Hyunjee;Choi, Kisun;You, Youngchan;Kim, Jinyoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.81-92
    • /
    • 2017
  • According to the revision of the Housing Act in 2013, it has been possible to carry out an apartment remodeling project involving two to three floor vertical extension. The remodeling project with vertical extension requires foundation reinforcement because structural safety due to additional load and enhanced seismic criteria must be met. In this case, structural analysis is performed to analyze the load distributed to existing PC pile and reinforced additional pile. The vertical stiffness ($K_v$) of the pile is required for structural analysis, but the research on the 20~30 year old PC pile stiffness is very limited. In this paper, the stiffness of the PC pile in accordance with the change of diameter and length was analyzed by examining the results of 38 field pile load tests performed during the construction of the apartments in the 1990's. As a result of the analysis, the pile stiffness decreases with the increase of the length-diameter ratio (L/D). In addition, the results of on-site pile load test are compared with the coefficient 'a' for estimating pile stiffness proposed in Korea Highway Bridge Design Standard (2008) and the Pile Foundation Design Guideline of Korea Railroad Corporation (2012). It shows that 'a' obtained through the estimation of the literature is very similar to the field test results in the range of 10

Study(IV) on the Development of Charts and Formulae Predicting Allowable Axial Bearing Capacity for Prebored PHC Pile Socketed into Weathered Rock through Sandy Soil Layer - Field Verification of Long-term Allowable Compressive Load of PHC Piles by Analyzing Pile Load Test Results - (사질토층을 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(IV) - 압축정재하시험 및 양방향재하시험 자료 분석을 통한 매입 PHC말뚝의 장기허용압축하중의 실증 성능 검증 -)

  • Lee, Wonje;Kim, Chae Min;Yun, Do Kyun;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.9
    • /
    • pp.29-36
    • /
    • 2019
  • Axial compressive failure loads ($P_n$) of diameter 500 mm and diameter 600 mm A type PHC pile were calculated as 7.7 MN and 10.6 MN, respectively. In the static pile load tests, the maximum axial compressive loads of the above 2 kinds of A type pile were measured as 6.9 MN and 8.8 MN respectively, therefore these measured maximum loads were at the level of 90% and 83% of $P_n$ respectively. Long-term allowable axial compressive loads ($P_a$) of the above 2 kinds of A type pile were 1.7 MN and 2.3 MN respectively. From the bi-directional pile load test data on the prebored PHC piles, it was confirmed that the allowable axial compressive bearing resistance was estimated as 131% of the long-term allowable compressive load of the PHC pile and showed higher than the allowable bearing capacity calculated by the current design method. Therefore, it has been verified that the PHC pile can be used up to the maximum long-term allowable compressive load, and it is suggested that the ultimate pile capacity formula used in the current design for prebored PHC piles should be improved to accommodate the actual capacity.