• Title/Summary/Keyword: pile design

Search Result 808, Processing Time 0.029 seconds

Uplift Capacity of Wood Pile for Greenhouse Foundation (온실 기초용 나무말뚝의 인발저항력 검토)

  • Yun, Sung Wook;Choi, Man Kwon;Lee, Si Young;Yu, Chan;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.123-127
    • /
    • 2015
  • Wood piles are rarely used in the construction of a greenhouse in Korea, but they are relatively more often used in other countries, such as the Netherlands. There are several advantages associated with wood piles: they are more cost-effective, less time-consuming, and more ecofriendly than the steel pipes (SPs) and pre-stressed highstrength (PHC) piles. However, one of the limiting conditions is that they have to be installed below the groundwater level to prevent decay. Since the groundwater levels are generally high in the reclaimed lands in Korea, wood piles are expected to be used often as reinforcements for foundations of greenhouses in these areas. In this study, we measured the uplift capacities of wood piles through in-situ uplift capacity tests with an aim to provide basic design data for wood pile foundations. In order to test their applicability, we then compared these experimentally measured ultimate uplift capacities with the ones calculated through some of the existing theoretical equations. The wood piles used in the loading tests were made of softwood (pine wood), and the tests were performed using piles with different diameters (∅25cm and ∅30cm) and embedded depths (1m, 3m, and 5m). The test results revealed that the uplift capacity of the wood piles showed a clear linearly increasing tendency in proportion to the embedded depth, with the ultimate uplift capacities for the diameters 25cm and 30cm being 9.38 and 10.56tf, respectively, at the embedded depth of 5m; thus demonstrating uplift capacities of ${\geq}9tf$. The comparison between the actually measured values of the uplift capacity and the ones calculated through equations revealed that the latter, which were obtained using the ${\alpha}$ method, were generally in an approximate agreement with the in-situ measured values.

A Study on the Micro-Topography Landscape Characteristics and Waterfront Landscape Style of Waterfront in Korean Jingyeong Landscape Painting (겸재 정선의 진경산수화에 나타난 수변의 미지형 경관 특성과 하경양식)

  • Kim, Yong-Hee;Kang, Young-Jo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.1
    • /
    • pp.26-38
    • /
    • 2019
  • This study is based on the analysis of the characteristics of waterfront scenery. Recently, waterfront development has expanded residentially, commercially and into leisure space. In the development of the waterfront, it is necessary to apply designs suitable for urban and various other waterfront areas. In this study, the natural scenery of the waterfront was researched with respect to the Korean Jingyeong landscape paintings and the main elements of the scenery were analyzed. In this study, 105 painting of Korean Jingyeong landscapes paintings were selected for the analysis of the waterside scenery. The paintings of Jeong Seon were studied to categorize streams topographically into mountainous, upper, middle, lower, and ocean types. In addition, major micro-topography elements, which are 13 water image elements and 13 staffage elements were analyzed. The main waterfront landscape elements are divided into 13 types. The waterfalls were divided into long waterfalls, short waterfalls, cascading waterfalls, and other aspects considered were line stream, curve stream, multi-curve stream, pond, water surface, flow surface, wave surface, rock side, pile sandy side, sandy side. There are 13 kinds of staffage elements, include pine forest, pine trees, fir trees, bamboo trees, willow trees, broadleaf tree, villages, houses, gazebo, boat, bridges, and people. The waterfront landscape by a river area was explained according to each characteristic of the waterfront landscape and staffage, and their changes were analyzed in each area. The 105 paintings were divided into 35 pieces of mountainous streams, 9 upper streams, 5 middle streams, 35 lower streams, and 21 oceans, and the change of each waterfront landscape and staffage was analyzed. Based on the topographical analysis of the waterfront landscape and staffage, the results can be summarized into 5 types of the waterfront landscape. Based on the micro-topographical characteristics of the waterfront landscape styles are as follow. In the mountainous streams, long waterfall and deep forest type are apparent, which depicts deep mountain waterfall scenery, and a multi-stream forest is the scenery of a picnic in the mountains, which is a representative form of mountainous streams landscape. In the upper-middle stream, the water-surface and gazebo type is predominant. In the lower stream, the sandy-gazebo typ scenery is predominant and the sandy depiction is unique to lower stream landscape. Pile sandy-dock type is life scenes where human activity highlighted, is a representative form of the lower stream landscapes. The characteristic of the coastal landscape is the serpentine rock scenery on the beach and the wave-serpentine rock type that forms the main coastal landscape. The study aims to propose significant design elements for a natural waterfront landscape planning based on the analysis of landscape in the paintings of Jeong Seon.

The Deformation Behavior of Anchored Retention Walls installed in Cut Slope (절개사면에 설치된 앵커지지 합벽식 옹벽의 변형거동)

  • Yun, Jung-Mann;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.475-482
    • /
    • 2009
  • The behavior of earth retention wall installed in cut slope is different from the behavior of retention wall applied in urban excavation. In order to establish the design method of anchored retention walls in cut slope, the behavior of anchored retention wall can be investigated and checked in detail. In this study, the behavior of anchored retention wall was investigated by instrumentation installed in cut slope for an apartment construction stabilized by a row of piles. The horizontal displacement of anchored retention wall was larger than the displacement of slope soil behind the wall at the early stage of excavation. As the excavation depth became deeper, the horizontal displacement of slope soil was larger than the displacement of anchored retention wall. It means that the horizontal displacement of anchored retention wall due to excavation is restrained by soldier pile stiffness and jacking force of anchor. Jacking force of anchor was mainly influenced in the horizontal displacement of anchored retention wall. The displacements of anchored retention wall and slope soil were affected mainly by an rainfall infiltrated from the ground surface. Meanwhile, the horizontal displacement of anchored retention wall with slope backside was about 2-6 times larger than the displacement of anchored retention wall with horizontal backside of excavation.

New Development of Hybrid Concrete Support Structure with Driven Piles for Offshore Wind Turbines (하이브리드 해상풍력 파일 기초 콘크리트 지지구조(MCF) 개발)

  • Kim, Hyun Gi;Kim, Bum Jun;Kim, Ki Du
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.3
    • /
    • pp.307-320
    • /
    • 2013
  • This paper proposes a new hybrid support structure by the driven piles which removes disadvantages of the existing type of support structure for offshore wind turbines. The hybrid type of support structure is combined with concrete cone and steel shaft, and is supported not only by gravity type foundations but also by driven piles. For three dimensional analysis of the huge and thick concrete structure, a solid-shell element that is capable of exact modeling and node interpolations of stresses is developed. By applying wave theory of stream function and solid-shell element in XSEA simulation software for fixed offshore wind turbines, a quasi-static analysis and natural frequency analysis of proposed support structure are performed with the environmental condition on Southwest Coast in Korea. In the result, lateral displacement is not exceed allowable displacement and a superiority of dynamic behavior of new hybrid support structure is validated by natural frequency analysis. Consequently, the hybrid support structure presented in this study has a structural stability enough to be applied on real-site condition in Korea. The optimized structures based on the preliminary design concept resulted in an efficient structure, which reasonably reduces fabrication costs.

The Deformation Behavior of Anchored Retention Walls in Cut Slope (절개사면에 설치된 앵커지지 흙막이벽의 변형거동)

  • Song Young-Suk;Lee Jae-Ho;Kim Tae-Hyung
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.155-168
    • /
    • 2005
  • The behavior of earth retention wall installed in a cut slope is different from the behavior of retention wall applied in an urban excavation. In order to establish the design method of anchored retention wall in the cut slope, the behavior of anchored retention wall needs to be investigated and checked in detail. In this study, the behavior of anchored retention wall was investigated by the instrumentation installed in the cut slope, where was stabilized by a row of piles in an apartment construction site. The horizontal displacement of anchored retention wall was larger than the displacement of slope soil behind the wall at the early stage of excavation. As the excavation depth became deeper, the horizontal displacement of slope soil was larger than the displacement of anchored retention wall. It means that the horizontal displacement of anchored retention wall due to excavation is restrained by soldier pile stiffness and jacking force of anchor at the early stage of excavation. lacking force of anchor was mainly influenced on the horizontal displacement of anchored retention wall. The displacements of anchored retention wall and slope soil were affected mainly by rainfall infiltrated from the ground surface. Meanwhile, the horizontal displacement of anchored retention wall with a sloped backside was about $2\~6$ times larger than the displacement of anchored retention wall with a horizontal backside of excavation.

Evaluation of Unit Side Resistance of Drilled Shafts by Revised SPT N Value (환산SPT N값을 이용한 현장타설말뚝의 단위주면마찰지지력 산정)

  • Yoon, Min-Seung;Lee, Chea-Keon;Kim, Myung-Hak
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.5-10
    • /
    • 2013
  • Bearing capacity of a drilled shaft can be separated into side resistance and base resistance. But in domestic design procedure side resistance is usually underestimated compared with base resistance. Results of bi-directional test showed that measured side resistances in each different layers are larger than those evaluated from several suggested methods. In this study, measured side resistances in each different layer of drilled shafts installed in domestic sites are analyzed and compared with evaluated side resistances from the method using revised SPT N value. For weathered rock and soft rock layer, from which rock core can hardly be obtained, we suggested new evaluated methods using revised SPT N value instead of the method using uniaxial compressive strength of rock. Resuts showed that the ranges of side resistance of cohesive and non-cohesive layer are $f_s{\leq}5tf/m^2$ and $f_s{\leq}15tf/m^2$ respectively. Range of side resistance in weathered rock is $15tf/m^2$ < $f_s{\leq}50tf/m^2$ and that in soft rock $f_s{\geq}35tf/m^2$.

Analysis of Nonlinear Destructive Interaction between Wind and Wave Loads Acting on the Offshore Wind Energy Converter based on the Hydraulic Model Test (해상 풍력발전체에 작용하는 풍하중과 파랑하중간의 비선형 상쇄간섭 해석 -수리모형실험을 중심으로)

  • Cho, Yong Jun;Yang, Kee Sok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.5
    • /
    • pp.281-294
    • /
    • 2015
  • In order to quantitatively estimate the nonlinear destructive interaction of wave load with wind load, which is very vital for the optimal design of offshore wind energy converter, we carried out a hydraulic model test and wind tunnel test. As a substructure of offshore wind energy converter, we would deploy the monopile, which is popular due to its easiness in construction. Based on the simulation using Monte Carlo simulation using Kaimal spectrum and cross spectrum, the instantaneous maximum wind velocity is adjusted to 10 m/s. And, considering the wave conditions of the Western Sea where a pilot wind farm is planned to be constructed, $H_s=0.1m$, 0.15 m, 0.2 m is carefully chosen. It turns out that the nonlinear destructive interaction between the wind and wave loads acting on the offshore wind energy converter is more clearly visible at rough seas rather than at mild seas, which strongly support our deduction that a Large eddy, a swirling vortex developed near the bumpy water surface in the opposite direction of the wind, is the driving mechanism underlying nonlinear destructive interaction between the wind and wave loads.

Development of Disassembly Tool for Intermediate Examination of Nuclear Fuel Rods (핵연료봉 중간검사를 위한 장탈착 툴 개발)

  • Hong, Jintae;Heo, Sung-Ho;Kim, Ka-Hye;Park, Sung-Jae;Joung, Chang-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.443-449
    • /
    • 2014
  • To check the characteristics of nuclear fuels during an irradiation test, the nuclear fuel rod needs to be disassembled from the test rig located in the pool of the research reactor. Then, the disassembled fuel rod is delivered to the hot cell for intermediate examination. A fuel rod that passes the intermediate examination is delivered to the reactor pool to be reassembled into the test rig. The irradiation test is resumed with the reassembled test rig. Because nuclear fuel rods irradiated by neutrons are highly radioactive, all the disassembly and reassembly processes should be carried out in the pool of the research reactor to prevent operators being exposed to radiation. In particular, because a test rig is 5.4-m long and the reactor pool of HANARO is 6-m deep, special tools need to be developed for performing the disassembly and reassembly processes. In this study, a new assembly design of nuclear fuel rods for intermediate examination is introduced. Furthermore, tools for treating the irradiated fuel rod assembly are introduced, and their performance is verified by an out pile test.

Principle and Application of Composting for Soils Contaminated with Hazardous Organic Pollutants (오염토양 정화를 위한 콤포스팅 기술의 원리와 적용에 관한 고찰)

  • Park, Joon-Seok;Lee, Noh-Sup;In, Byung-Hoon;Namkoong, Wan;Hwang, Eui-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.77-87
    • /
    • 2001
  • Composting is a cost-effective and environmentally-sound technology to treat soils contaminated with hazardous organic pollutants. Pollutants to be treated are as follows: explosives, phenolic compounds, PAHs, petroleum hydrocarbons, pesticides, and etc. Composting systems are windrow, static pile, and in-vessel. Design and operational parameters of composting are aeration modes, temperature, moisture content, nutrient supplement, amendment added, and etc. Appropriate oxygen concentration of composting for contaminated soils are 5~15%, while some compounds are degraded well at the low $O_2$ concentration of 2~5%. The most diverse microorganisms live in the temperature of $25{\sim}40^{\circ}$. 50~90% of the soil field capacity is the moisture content not to make a problem in composting. Assuming a bacterial chemical equation is $C_{60}H_{87}O_{23}N_{12}P$, theoretical C : N : P from bacterial chemical portion is approximately 20 : 5 : 1. It should be noted that the ratio does not apply to the total organic carbon measured in a waste because not all carbon metabolized by bacteria is synthesized to new cellular material. Initial C/N ratio of 25~40 is optimum. It is more economical to recycle soils or composts than to add commercial microbes.

  • PDF

A Comparison Study between Top-down Load Test and Bi-directional Load Test Analysis Method in Rock-socketed Small Size Drilled Shaft (암반소켓된 소구경 현장타설말뚝의 정재하시험과 양방향재하시험 분석법 비교연구)

  • Song, Myungjun;Song, Younghun;Jung, Minhyung;Park, Youngho;Park, Jaehyun;Lee, Juhyung;Chung, Moonkyung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.9
    • /
    • pp.5-12
    • /
    • 2013
  • In this study, each top-down load test and bi-directional load test has been performed on the 480mm diameter of two rock socketed drilled shafts, which are located next to each other, and the results have been compared. The result shows that the settlement from the equivalent load-settlement curve of bi-directional load test is smaller than one from top-down load test, because elastic is not considered in equivalent load-settlement curve of bi-directional load test. Therefore elastic shortening should be considered to obtain appropriate equivalent load-settlement curve. Three existing methods used to obtain equivalent load-settlement curve with consideration of elastic shortening has been compared with the result of top-down load test. The result shows that those existing methods are sufficiently applicable to the design. In addition, result of comparison between top-down load test and bi-directional load test shows that bi-directional load test was found to overestimate bearing capacity because it does not consider pile body failure.